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The Three Ms of Malfeasance
@ But agents are prone to malfeasance @ mismanagement

@ Applies generally:

> VCfinancing today
> Publicly Traded Corporations
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VCFinancing Large Corporations

@ Governance positively correlated with

@ pay-performance sensitivity and

N . o
monitoring are substitutes stock price, credit yield spread,

stock returns, ROI, Tobin's Q, q, . . .

[Bernstein, Giroud, Townsend, Bengtsson and [Gompers, Ishil, Metrick; ...

Raddl > Increased board activity after poor
@ Payments are back-loaded performance
@ Monitoring increases after sustained [Vafeas; ...]

poor performance @ Performance sensitive debt payments

[Kaplan and Stromberg] @ Backloaded dividends
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Monitoring in Contracts

@ Components of contract
> Action
> Performance sensitivity
> Monitoring

Milgrom-Roberts

output y=a+oe
so+ By

@ Verification, Auditing =
Retrospective Monitoring

@ ‘Barriers to Malfeasance’ = Optimal (a, o, B) jointly determined
Prospective Monitoring

wage w
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@ Dynamic Principal-Agent model of firm with monitoring
@ Unified framework allows for joint determination of
> performance-pay sensitivity
> intensity of governance
> price of firm's securities
> market quantities like credit yield spread
® Main Idea
> Limited Liability implies firm “risk averse”
> Characterise shape of induced risk aversion
> Fully determines monitoring intensity
> Comparative statics of risk aversion
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@ Financial Contracting

> Discrete time: Bolton-Sharfstein (1990), DeMarzo-Fishman (2007),
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@ Empirical literature on Governance ...
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@ Time is continuous, t € [0, o)

@ Risk neutral Principal w/ deep pockets, discount rate r
@ Risk neutral Agent, discountratey > r

@ Agent has (i) limited liability and (ii) no wealth

@ Principal covers operating losses

[ follow DeMarzo and Sannikov (2006) ]
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Model (contd)

W In DS: T is singleton

dY, = pdt + o,dB;

> Volatility o; chosen by Principal at Cost p (o)

> o EX = {0'(0),...,0'(,,)}, (i) > O(i+1)
> p(o(iy) < p(ogsr)): Moreaccuracy is costlier @ Benefit of diversion D; is
@ Principal observes Agent report Y; where ADy, where A € (0, 1]

@ Always optimal to
implement truth-telling:
D; =O0forallt >0

dﬁ = (IJ — Dt)dt + O'tdBt
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Principal’s Problem

> C = (Cy): Cash payments (cumulative, increasing, RCLL)
> 7 > 0: Liquidation time
> o = (oy): Monitoring levels

Profit = F(w = wp; ®) := EP=0° UOT e "[(u—plor))dt — dct]]

@ Promise keeping




o Find profit-maximising full commitment contractat t = 0
o Contract ® = (C, 7, 0), as function of reported path (Y;):
> C = (C¢): Cash payments (cumulative, increasing, RCLL)
> 1 > 0: Liquidation time
> o = (oy): Monitoring levels

Profit = F(w = wp; @) := EP=0° [J e "[(u—p(os))dt — dC¢]
0

T
wo = EP=0° U e_}'tdCt]
0
@ Incentive Compatibility

- T
gED=00 [J e—)’fdct] > EPC [J et (dCt + /\Dtdt)]

@ Promise keeping

0 0
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Continuation Utility

o W = (W,) is agent’s continuation utility process

N T
W, = E[° U e 7TI[dCs + A(dY; — d?s)]]

t

@ Key Insight: Can write contractin terms of W ... Recursive Contracts

> same as with discrete time models
> works because output is BM, iid increments
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Truth-Telling

D, = 0is Incentive Compatible if, and Intuition:

only if, If Agent steals D,dt = dY; — d¥;
Z: = oA forall t>0 ° Gain =A(dYt - dYt)
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o Write optimal contract with

. F(w) is value function
» we[0,00) asstate variable (W)
» z,0,C ascontrols

Theorem

F is concave and C2 solution of (variational) HJB ...
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o Write optimal contract with

. F(w) is value function
» we[0,00) asstate variable (W)
» z,0,C ascontrols

Theorem

F is concave and C2 solution of (variational) HJB ...

min [rF —pu—ywF' —max (F' +1)(=dC) — max [12°F" — p(0)], F' + 1} >0
C 0,2=A0

@ F continuous, viscosity solution of HJB

) ; ; @ FisC?solution [Schaudertheory]
@ F viscosity solution = F concave
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Immediate Consequences

min |rF —py —ywF —|—mcin F'+1)dC — max [7z°F" —p(o)], FF+1| =2

0,z2=A0

°o Fllw)>-1 =
dC; =0 <= F'(w) > —1

@ F concave = thereis smallest w* € (0, c0) such that

Fliw)=-1 = F'(w)=—-1forw=w"




Optimal Contract

@ w* is payment boundary

o W;e[0,w*]

o t=inf{t: W, =0} <

@ dC =0forw € [0,w")
(backload)

@ C; satisfies

=

rF+yw=np
F(w)
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@ —A2F" = risk aversion




Optimal Contract: Monitoring

@ F concave implies low monitoring
z=Ao

X
@ Optimal o depends on F” 0 w* w

high monitoring




Optimal Contract: Monitoring

@ z>A0,0€X
L 1
=0
@ F concave implies low monitoring
z=Ao
@ Optimal o depends on F” 0 w* w
e —A2F" = risk aversion ~ high monitoring
. H
o For u sufficiently large ——— o
%0
—2p(o(1))
2) 2]

{0)—0

Pay Sensitivity and Monitoring are

substitutes

Dynamics of Monitoring
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Shape of Risk Aversion

Risk Aversion = —A2F"(w) o r ['171 — F(w) — w] -t I)’W(F'(W) + f/)’)I

1
- X| hange in val
efficiency loss > 0 expected change in value

Proposition: There exists ' such that

o efficiency loss due to agency > 0: .
decreases in w HZp =

@ expected change in value: increases,

F'(O;u) =0
RA 1 then |

then decreases in w

F'(O;u) <0

RA decreases

p<pl =>{




Comparative Statics: Risk Aversion when yy < o

T —————"
high monitoring under jq

=21 /0(20)

—2p(oq1))
2 _ 2
%091

AZF”(w, /‘Ll)
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high monitoring under 1,
high monitoring under 1¢;
2
—2p1/ O(0)
2
—2p2/ O(0)
—2p(o))

AZF”(w, I‘LI)
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Risk Aversion = —A2F"(w;u) o r [é — F(w;u) — W] +I}’W(F’(W;/J) + r/y)I

efficiency loss expected change in value

Lemma Lemma:
For fixed w > 0, For fixed w > 0,

0 < OuF (wip) <1/r 0 < duF'(w;p)
Efficiency loss increasing in u Expected value change increasing in u

(i) Risk Aversion increases in u (ii) wand u are complements
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Optimal Contract — Implementation

@ Cash reserves M; are observable and
Securities and Assets contractable

@ Agent gets fraction A of stocks

@ Principal(s) hold fraction 1 — A of

® M = W/Ais cash reserve
stocks and all bonds

» dynamics of M, from W;

@ Bond pays continuous coupon of
u—(y—r)M;

@ stocks




Follow BMPR

@ Cash reserves M; are observable and
Securities and Assets contractable
@ Agent gets fraction A of stocks

@ Principal(s) hold fraction 1 — A of

@ M = W /Ais cashreserve
stocks and all bonds

> dynamics of M, from W,
@ Bond pays continuous coupon of

p—(y—r)M
o Stock pays dividend A~'dC when
M; = W*//l [agent controls dividends ]

@ stocks

@ bonds

Dynamics of Monitoring
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Stock Prices

BVP for stock prices
S —E [ f e—r<s—tu—1dcs] r$(m) = yms'(m) + 30> (Am)S" (m)
t e §(0)=0
but S; = S(M;), so o &'(w*/A) =1
Then, S; = §(M;) and 8(-) is
dS; = rS;dt +V,dB, — A~ 'dC, @ strictly increasing

o strictly concave = continuous
whereV; = 8'(M;)o(AM;)/S; = local
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Comparative Statics

Theorem: Following an increase in u or decrease in A:
o dividend threshold m* 1
@ governance = monitoring T Vm

@ stock price T Vm

@ credit yield spread | Vm
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dM; = yM,dt — A71dC; + o(AM,)dB,

@ M, has positive drift on [0, m”]
@ greater y implies lower o (-)

@ M, more likely to spend time near
m} under u; than near my under p4

@ M, less likely to hit w = 0 under u,
than p;




dM; = yM,dt — A='dC; + o(AM,)dB;

@ M, has positive drift on [0, m”]
@ greater y implies lower o (-)

@ M; more likely to spend time near
my under u, than near m3 under

@ M, less likely to hit w = 0 under u;
than p;

Dynamics: Monitoring increases after drop in stock price (Vafeas 1999)

Dynamics of Monitoring
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D; = E, [ff e "= — (y — r)Ms]ds]

@ D, = price of bond
® D, =D(My)
@ BVPfor D ...

@ (1 —A)S; + D; = market value of
securities held by financiers




Bond Prices

D; = E, [f: e "= — (y — r)Ms]ds]

Proposition
@ D; = price of bond (1= A)S; + Dy > F(AM,) + M,
o Dt = @(Mt) market value true value
@ BVPfor D ...
@ (1 —A)S; + D; = market value of Difference =E, [{; e "(*~*)p(oy)ds| =

securities held by financiers monitoring costs
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Credit Risk

> expected discounted extinction time
> normalised, so X; € (0, 1)

® Credityield spread {; on $1 coupon in perpetuity is s.t.
Q0 {3
f e_(r-"_ct)(s_t)ds = Et [J e_r(s_t)ds:|
t t

X
¢t = ————= = credit yield spread

@ Then,
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Extensions

@ Stochastic drift
> Expose agent to observable risk
> payment boundary depends on W; and y;
@ Measure of Governance needs
> V, = local volatility of stock price via Dupire’s Formula
> A; = Delta of compensation
> S; = stock price

@ General moral hazard and monitoring
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Milgrom-Roberts

when pay-sensitivity B is higher, monitoring
is also higher (because o is correspondingly
lower)

@ monitoring and pay-sensitivity are
complements

@ sensitivity B increasing in optimal
action

Follow Sannikov

Output dX; = a;dt + o:dB;
Effortcost h(a) = 1a?

IC  B: = a;

Monitoring Intensity

B = —[rsz”(W) + F’(w)]

—1
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Comparison Theorem BVP for stock prices
o r&(m) =ymS'(m) + 302(Am)S" (m)
Let F,G : [0, m'] — R and o S(0)=0
¥(m,F,F,F") >0 o §'(m*) =1
¥(m,G,G,G") <0

Let uy < pp. Then,

If G(m") < F(mT), then @ my < mj

@ o5(m) < of(m)
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Comparison Theorem
Let F,G : [0, m'] — R and

Y(m,F,F',F") >0
¥(m,G,G,G") <0
If G(m") < F(mT), then

G(m) < F(m) VYme[0,m]

Doesn't require F, G to be C%;
Y can be nonlinear

Example: Stock Prices and increase in i
BVP for stock prices

o r&(m) =ymS'(m) + 302(Am)S" (m)
@ $(0)=0
o S'(m*) =1

Let uy < po. Then,

* *
om1<m2

@ o5(m) < of(m)

o 1=48/(my) <8 (m*)

@ & is subsolution to ODE under o3, so
o &1(m) < S2(m)Vm
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Compensation depends on balance sheet as well as governance structure

... and vice versa

Rationalises correlations
Extensions:

> exogenous risk

> general moral hazard

> measurement of governance
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SOX and Public Policy

Effect of SOX

Sarbanes-OXley Act AsoxF(m) <0
Disallow oy = op atany ¢

*

Asoxm* = Agovm* =F A,,m
L 1 L

<0 <0
Asox(m) = Agov(m) + A, H (m) BsoxS (m) = Agov (m) + By S (m)
L 1 L 1 20 )

governance profitability

Asox L (m) = Ago\,%(m)l—i— Ay Z(m)
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Measure of Governance

Vt‘At'St =A0’t
| S

local governance > = cS”(S“(St))a(/lS‘1(St))/St
> Local volatility of stock price

@ V; via Dupire’s formula

@ A; measured in many ways

@ V; =local volatility > Provide bounds as function of y, A

R > Bounds are monotonic
@ A; = Delta of compensation

. @ Induces Governance Smile...
@ S; =stock price

Extensions
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