Optimal Monitoring in Dynamic Financial Contracts

Arash Fahim¹ Simon Gervais² R. Vijay Krishna³

¹Florida State University – Math ²Duke University – Fuqua ³Florida State University – Econ

April 11, 2024

• Firms pay agents to manage them

- Firms pay agents to manage them
- But agents are prone to *malfeasance*

The Three Ms of Malfeasance

- mismanagement
- misallocation
- misappropriation

- Firms pay agents to manage them
- But agents are prone to *malfeasance*
- Applies generally:
 - VC financing today
 - Publicly Traded Corporations

The Three Ms of Malfeasance

- mismanagement
- misallocation
- misappropriation

Stylised Facts

 pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are back-loaded
- Monitoring increases after sustained poor performance

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are back-loaded
- Monitoring increases after sustained poor performance

Large Corporations

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

Governance positively correlated with

Large Corporations

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

[Kaplan and Stromberg]

- Governance positively correlated with
 - stock price, credit yield spread, stock returns, ROI, Tobin's Q, q, ...
 [Gompers, Ishii, Metrick; ...]

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

[Kaplan and Stromberg]

- Governance positively correlated with
 - stock price, credit yield spread, stock returns, ROI, Tobin's Q, q, ...
 [Gompers, Ishii, Metrick; ...]
 - Increased board activity after poor performance
 [Vafeas; ...]

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

[Kaplan and Stromberg]

- Governance positively correlated with
 - stock price, credit yield spread, stock returns, ROI, Tobin's Q, q, ...
 [Gompers, Ishii, Metrick; ...]
 - Increased board activity after poor performance
 [Vafeas; ...]
- Performance sensitive debt payments

- pay-performance sensitivity and monitoring are *substitutes* [Bernstein, Giroud, Townsend, Bengtsson and Ravid]
- Payments are *back-loaded*
- Monitoring increases after sustained poor performance

[Kaplan and Stromberg]

- Governance positively correlated with
 - stock price, credit yield spread, stock returns, ROI, Tobin's Q, q, ...
 [Gompers, Ishii, Metrick; ...]
 - Increased board activity after poor performance [Vafeas; ...]
- Performance sensitive debt payments
- Backloaded dividends

Monitoring in Contracts

Monitoring in Contracts

Action

- Action
- Performance sensitivity

- Action
- Performance sensitivity
- Monitoring

- Action
- Performance sensitivity
- Monitoring
- Verification, Auditing = *Retrospective Monitoring*

- Action
- Performance sensitivity
- Monitoring
- Verification, Auditing = *Retrospective Monitoring*
- 'Barriers to Malfeasance' = **Prospective Monitoring**

- Action
- Performance sensitivity
- Monitoring
- Verification, Auditing = *Retrospective Monitoring*
- 'Barriers to Malfeasance' = **Prospective Monitoring**

- Components of contract
 - Action
 - Performance sensitivity
 - Monitoring
- Verification, Auditing = *Retrospective Monitoring*
- 'Barriers to Malfeasance' = *Prospective Monitoring*

Milgrom-Roberts

output $y = a + \sigma \varepsilon$ wage $w = s_0 + \beta y$

Optimal (a, σ, β) jointly determined

• Dynamic Principal-Agent model of firm with monitoring

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread
- Main Idea

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread

• Main Idea

Limited Liability implies firm "risk averse"

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread

• Main Idea

- Limited Liability implies firm "risk averse"
- Characterise shape of induced risk aversion

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread

• Main Idea

- Limited Liability implies firm "risk averse"
- Characterise shape of induced risk aversion
- Fully determines monitoring intensity
This Paper

- Dynamic Principal-Agent model of firm with monitoring
- Unified framework allows for joint determination of
 - performance-pay sensitivity
 - intensity of governance
 - price of firm's securities
 - market quantities like credit yield spread

• Main Idea

- Limited Liability implies firm "risk averse"
- Characterise shape of induced risk aversion
- Fully determines monitoring intensity
- Comparative statics of risk aversion

• Principals gather information about agents

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...
- Prospective vs Retrospective information

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...
- Prospective vs Retrospective information
- Financial Contracting

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...
- Prospective vs Retrospective information
- Financial Contracting
 - Discrete time: Bolton-Sharfstein (1990), DeMarzo-Fishman (2007), Clementi-Hopenhayn (2006)

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...
- Prospective vs Retrospective information
- Financial Contracting
 - Discrete time: Bolton-Sharfstein (1990), DeMarzo-Fishman (2007), Clementi-Hopenhayn (2006)
 - Continuous time: DeMarzo-Sannikov (2006), Biais-Mariotti-Plantin-Rochet (2007)

- Principals gather information about agents
 - Static: Baiman and Demski (1980), Dye (1986), Milgrom and Roberts (1992), Tirole (2006)
 - Dynamic: Georgiadis and Szentes (2020), Piskorski and Westerfield (2016), ...
- Prospective vs Retrospective information
- Financial Contracting
 - Discrete time: Bolton-Sharfstein (1990), DeMarzo-Fishman (2007), Clementi-Hopenhayn (2006)
 - Continuous time: DeMarzo-Sannikov (2006), Biais-Mariotti-Plantin-Rochet (2007)
- Empirical literature on Governance ...

Model

• Time is continuous, $t \in [0, \infty)$

- Time is continuous, $t \in [0, \infty)$
- Risk neutral Principal w/ deep pockets, discount rate r

- Time is continuous, $t \in [0, \infty)$
- Risk neutral Principal w/ deep pockets, discount rate r
- Risk neutral Agent, discount rate $\gamma > r$

Model

- Time is continuous, $t \in [0, \infty)$
- Risk neutral Principal w/ deep pockets, discount rate r
- Risk neutral Agent, discount rate $\gamma > r$
- Agent has (i) limited liability and (ii) no wealth

Model

- Time is continuous, $t \in [0, \infty)$
- Risk neutral Principal w/ deep pockets, discount rate r
- Risk neutral Agent, discount rate $\gamma > r$
- Agent has (i) limited liability and (ii) no wealth
- Principal covers operating losses

• Firm produces cash flows

 $dY_t = \mu dt + \sigma_t dB_t$

In DS: Σ is singleton

- Volatility σ_t chosen by Principal at Cost $\rho(\sigma_t)$
- $\sigma_t \in \Sigma = \{\sigma_{(0)}, \dots, \sigma_{(n)}\}, \quad \sigma_{(i)} > \sigma_{(i+1)}$ • $\rho(\sigma_{(i)}) < \rho(\sigma_{(i+1)})$: More accuracy is costlier

• Firm produces cash flows

 $dY_t = \mu dt + \sigma_t dB_t$

In DS: Σ is singleton

- ► Volatility σ_t chosen by Principal at Cost $\rho(\sigma_t)$ ► $\sigma_t \in \Sigma = {\sigma_{(0)}, ..., \sigma_{(n)}}, \quad \sigma_{(i)} > \sigma_{(i+1)}$ ► $\rho(\sigma_{(i)}) < \rho(\sigma_{(i+1)})$: More accuracy is costlier
- Principal observes Agent **report** \hat{Y}_t where

$$d\hat{Y}_t = (\mu - D_t)dt + \sigma_t dB_t$$

• Firm produces cash flows

 $dY_t = \mu dt + \sigma_t dB_t$

► Volatility σ_t chosen by Principal at Cost $\rho(\sigma_t)$ ► $\sigma_t \in \Sigma = \{\sigma_{(0)}, \dots, \sigma_{(n)}\}, \quad \sigma_{(i)} > \sigma_{(i+1)}$ ► $\rho(\sigma_{(i)}) < \rho(\sigma_{(i+1)})$: More accuracy is costlier

• Principal observes Agent **report** \hat{Y}_t where

 $d\hat{Y}_t = (\mu - D_t)dt + \sigma_t dB_t$

• $D_t \ge 0$ is cash-flow diversion

In DS: Σ is singleton

- Benefit of diversion D_t is λD_t , where $\lambda \in (0, 1]$
- Always optimal to implement truth-telling:
 - $D_t = 0$ for all $t \ge 0$

Model (contd)

Model (contd)

Recap

Cash Flow

 $dY_t = \mu dt + \sigma_t dB_t$

Agent Reports \hat{Y}_t

 $d\hat{Y}_t = (\mu - D_t)dt + \sigma_t dB_t$

Agent Benefit = λD_t , $\lambda \in (0, 1]$ Principal flow cost = $\rho(\sigma_t)$

Recap

Cash Flow

 $dY_t = \mu dt + \sigma_t dB_t$

Agent Reports \hat{Y}_t

 $d\hat{Y}_t = (\mu - D_t)dt + \sigma_t dB_t$

Agent Benefit = λD_t , $\lambda \in (0, 1]$ Principal flow cost = $\rho(\sigma_t)$

Recap

Cash Flow

 $dY_t = \mu dt + \sigma_t dB_t$

Agent Reports \hat{Y}_{t}

 $d\hat{Y}_t = (\mu - D_t)dt + \sigma_t dB_t$

Agent Benefit = λD_t , $\lambda \in (0, 1]$ Principal flow cost = $\rho(\sigma_t)$

Alternative Model

Cash Flow

 $dY_t = \mu dt + \sigma_0 dB_t$

Agent Reports \hat{Y}_{t}

$$d\hat{Y}_t = (\mu - D_t)dt + \sigma_0 dB_t$$

Agent Benefit = $\lambda_t D_t, \lambda_t \in (0, 1]$ Principal flow cost = $\rho(\lambda_t)$

• Find profit-maximising *full commitment* contract at t = 0

- Find profit-maximising *full commitment* contract at t = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :

- Find profit-maximising *full commitment* contract at *t* = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :
 - $C = (C_t)$: Cash payments (cumulative, increasing, RCLL)

- Find profit-maximising *full commitment* contract at t = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :
 - $C = (C_t)$: Cash payments (cumulative, increasing, RCLL)
 - $\tau \ge 0$: Liquidation time

- Find profit-maximising *full commitment* contract at *t* = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :
 - $C = (C_t)$: Cash payments (cumulative, increasing, RCLL)
 - $\tau \ge 0$: Liquidation time
 - $\sigma = (\sigma_t)$: Monitoring levels

Profit =
$$F(w = w_0; \Phi) := \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

- Find profit-maximising *full commitment* contract at *t* = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :
 - $C = (C_t)$: Cash payments (cumulative, increasing, RCLL)
 - $\tau \ge 0$: Liquidation time
 - $\sigma = (\sigma_t)$: Monitoring levels

Profit =
$$F(w = w_0; \Phi) := \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

• Promise keeping

$$w_0 = \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-\gamma t} dC_t
ight]$$

- Find profit-maximising *full commitment* contract at *t* = 0
- Contract $\Phi = (C, \tau, \sigma)$, as function of reported path (\hat{Y}_t) :
 - $C = (C_t)$: Cash payments (cumulative, increasing, RCLL)
 - $\tau \ge 0$: Liquidation time
 - $\sigma = (\sigma_t)$: Monitoring levels

$$\mathsf{Profit} = \mathcal{F}(w = w_0; \Phi) := \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

• Promise keeping

$$w_0 = \mathbf{E}^{D=0,\sigma} \left[\int_0^{\tau} e^{-\gamma t} dC_t \right]$$

• Incentive Compatibility

$$\mathbf{E}^{D=0,\sigma}\left[\int_{0}^{\tau} e^{-\gamma t} dC_{t}\right] \geq \mathbf{E}^{D,\sigma}\left[\int_{0}^{\tau} e^{-\gamma t} \left(dC_{t} + \lambda D_{t} dt\right)\right]$$

Continuation Utility

• $W = (W_t)$ is agent's continuation utility process

$$W_t = \mathbf{E}_t^{\hat{Y},\sigma} \left[\int_t^\tau e^{-\gamma(s-t)} \left[dC_s + \lambda (dY_s - d\hat{Y}_s) \right] \right]$$

• $W = (W_t)$ is agent's continuation utility process

$$W_t = \mathbf{E}_t^{\hat{\gamma},\sigma} \left[\int_t^\tau e^{-\gamma(s-t)} \left[dC_s + \lambda (dY_s - d\hat{Y}_s) \right] \right]$$

• Key Insight: Can write contract in terms of W ... Recursive Contracts

• $W = (W_t)$ is agent's continuation utility process

$$W_t = \mathbf{E}_t^{\hat{Y},\sigma} \left[\int_t^\tau e^{-\gamma(s-t)} \left[dC_s + \lambda (dY_s - d\hat{Y}_s) \right] \right]$$

• *Key Insight:* Can write contract in terms of *W* ... *Recursive Contracts*

same as with discrete time models
• $W = (W_t)$ is agent's continuation utility process

$$W_t = \mathbf{E}_t^{\hat{Y},\sigma} \left[\int_t^{\tau} e^{-\gamma(s-t)} \left[dC_s + \lambda (dY_s - d\hat{Y}_s) \right] \right]$$

- Key Insight: Can write contract in terms of W ... Recursive Contracts
 - same as with discrete time models
 - works because output is BM, iid increments

$$dW_t = \gamma W_t dt - [dC_t + \lambda (dY_t - d\hat{Y}_t)] + Z_t \sigma_t^{-1} \cdot \underbrace{(d\hat{Y}_t - \mu dt)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

$$dW_t = \gamma W_t dt - [dC_t + \lambda (dY_t - d\hat{Y}_t)] + Z_t \sigma_t^{-1} \cdot \underbrace{(d\hat{Y}_t - \mu dt)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

$$dW_t = \gamma W_t dt - [dC_t + \lambda (dY_t - d\hat{Y}_t)] + Z_t \sigma_t^{-1} \cdot \underbrace{(d\hat{Y}_t - \mu dt)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

$$dW_t = \gamma W_t dt - [dC_t + \lambda (dY_t - d\hat{Y}_t)] + Z_t \sigma_t^{-1} \cdot \underbrace{(d\hat{Y}_t - \mu dt)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

• **Lemma:** There is **sensitivity process** $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{ \left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling $D_t = 0$ is *Incentive Compatible* if, and

only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Proof

• **Lemma:** There is **sensitivity process** $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{ \left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling $D_t = 0$ is *Incentive Compatible* if, and

only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Proof

• Lemma: There is sensitivity process $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{\left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling

 $D_t = 0$ is *Incentive Compatible* if, and only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Intuition:

If Agent steals $D_t dt = dY_t - d\hat{Y}_t$

• Lemma: There is sensitivity process $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{\left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling

 $D_t = 0$ is *Incentive Compatible* if, and only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Intuition:

If Agent steals $D_t dt = dY_t - d\hat{Y}_t$ • **Gain** = $\lambda (dY_t - d\hat{Y}_t)$

• Lemma: There is sensitivity process $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{\left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling

 $D_t = 0$ is *Incentive Compatible* if, and only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Intuition:

If Agent steals $D_t dt = dY_t - d\hat{Y}_t$ • Gain = $\lambda (dY_t - d\hat{Y}_t)$ • Loss = $Z_t \sigma_t^{-1} \cdot (dY_t - d\hat{Y}_t)$

• Lemma: There is sensitivity process $Z_t(\hat{Y})$ such that

$$dW_t = \gamma W_t dt - \left[dC_t + \lambda (dY_t - d\hat{Y}_t) \right] + Z_t \sigma_t^{-1} \cdot \underbrace{\left(d\hat{Y}_t - \mu dt \right)}_{= \sigma_t dB_t - d(Y_t - \hat{Y}_t)}$$

Truth-Telling

 $D_t = 0$ is *Incentive Compatible* if, and only if,

$$Z_t \ge \sigma_t \lambda$$
 for all $t \ge 0$

$$\lim_{t\to\infty} e^{-\gamma t} W_t = 0 \quad \mathbf{P}^D \text{-a.s.} \quad \forall D$$

Intuition:

If Agent steals $D_t dt = dY_t - d\hat{Y}_t$ • Gain = $\lambda (dY_t - d\hat{Y}_t)$ • Loss = $Z_t \sigma_t^{-1} \cdot (dY_t - d\hat{Y}_t)$ • IC \iff Gain \leq Loss

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

• Bounds for F:

 $-w \leq F(w) \leq \mu/r - w$

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

• Bounds for F:

$$-w \leq F(w) \leq \mu/r - w$$

• Lower bound is immediate termination: $w \mapsto -w$

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

$$-w \leq F(w) \leq \mu/r - w$$

- Lower bound is immediate termination: $w \mapsto -w$
- Upper bound is first best: $w \mapsto \mu/r w$

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

$$-w \leq F(w) \leq \mu/r - w$$

- Lower bound is immediate termination: $w \mapsto -w$
- Upper bound is first best: $w \mapsto \mu/r w$
- *F* is **concave**

• Value Function

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

$$-w \leq F(w) \leq \mu/r - w$$

- Lower bound is immediate termination: $w \mapsto -w$
- Upper bound is first best: $w \mapsto \mu/r w$
- F is concave
 - mix between w and w' to concavify

$$F(w) = \sup_{(C,\tau,\sigma)} \mathbf{E}^{D=0,\sigma} \left[\int_0^\tau e^{-rt} \left[(\mu - \rho(\sigma_t)) dt - dC_t \right] \right]$$

subject to (i) IC and (ii) PK

$$-w \leq F(w) \leq \mu/r - w$$

- Lower bound is immediate termination: $w \mapsto -w$
- Upper bound is first best: $w \mapsto \mu/r w$
- *F* is **concave**
 - mix between w and w' to concavify
 - concave even without mixing ...

• Write optimal contract with

• Write optimal contract with

• $w \in [0, \infty)$ as state variable

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C^2 solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^2F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

F(w) is value function

• F continuous, viscosity solution of HJB

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^2F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

- F continuous, viscosity solution of HJB
- F viscosity solution \implies F concave

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^2F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

- F continuous, viscosity solution of HJB
- F viscosity solution \implies F concave

• Write optimal contract with

- $w \in [0, \infty)$ as state variable
- z, σ, C as controls

Theorem

F is concave and C² solution of (variational) HJB ...

$$\min\left[rF - \mu - \gamma wF' - \max_{C} \left(F' + 1\right)(-dC) - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^2F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

F(w) is value function

- F continuous, viscosity solution of HJB
- F viscosity solution \implies F concave

• *F* is C² solution [Schauder theory]

Dynamics of Monitoring

$$\min\left[rF - \mu - \gamma wF' + \min_{C} \left(F' + 1\right)dC - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^2F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

$$\min\left[rF - \mu - \gamma wF' + \min_{C} (F' + 1)dC - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

• $F'(w) \ge -1 \implies$
 $dC_{t} = 0 \iff F'(w) > -1$

$$\min\left[rF - \mu - \gamma wF' + \min_{C} \left(F' + 1\right)dC - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$

• $F'(w) \ge -1 \implies$
 $dC_{t} = 0 \iff F'(w) > -1$

• *F* concave \implies there is smallest $w^* \in (0, \infty)$ such that

$$F'(w^*) = -1 \implies F'(w) = -1 \text{ for } w \ge w^*$$
$$\min\left[rF - \mu - \gamma wF' + \min_{C} \left(F' + 1\right)dC - \max_{\sigma, z \ge \lambda\sigma} \left[\frac{1}{2}z^{2}F'' - \rho(\sigma)\right], F' + 1\right] \ge 0$$
• $F'(w) \ge -1 \implies$

$$dC_{t} = 0 \iff F'(w) > -1$$

• F concave \implies there is smallest $w^* \in (0, \infty)$ such that

$$F'(w^*) = -1 \implies F'(w) = -1 \text{ for } w \ge w^*$$

• Backloaded payments: Ct satisfies

$$C_t = \int_0^t \mathbb{1}(W_s \ge w^*) dC_s$$

Optimal Contract

Optimal Contract: Monitoring

$$rF(w) = \mu + \gamma w F'(w) + \max_{\substack{C \\ = 0}} \left[-\left(F'(w) + 1\right) dC \right] + \max_{\substack{z \ge \lambda \sigma, \sigma \in \Sigma}} \left[\frac{1}{2} z^2 F''(w) - \rho(\sigma) \right]$$

- F concave implies
 - $z = \lambda \sigma$
- Optimal σ depends on F''
- $-\lambda^2 F'' = risk aversion$

Optimal Contract: Monitoring

Optimal Contract: Monitoring

Shape of Risk Aversion

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\frac{\varphi}{\varphi}}$$

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\frac{\varphi}{\varphi}}$$

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\frac{\varphi}{\varphi}}$$

efficiency loss due to agency ≥ 0: decreases in w

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\exp(cted change in value)}$$

- efficiency loss due to agency ≥ 0: decreases in w
- expected change in value: increases, then decreases in *w*

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\exp(cted change in value)}$$

- efficiency loss due to agency ≥ 0: decreases in w
- expected change in value: increases, then decreases in *w*

Risk Aversion =
$$-\lambda^2 F''(w) \propto r \left[\frac{\mu}{r} - F(w) - w\right] + \frac{\gamma w (F'(w) + r/\gamma)}{\exp(cted change in value)}$$

Proposition: There exists μ^{\dagger} such that

- efficiency loss due to agency ≥ 0: decreases in w
- expected change in value: increases, then decreases in *w*

 $\mu \ge \mu^{\dagger} \implies \begin{cases} F'(0;\mu) \ge 0\\ \mathsf{RA} \uparrow \mathsf{then} \downarrow \end{cases}$ $\mu < \mu^{\dagger} \implies \begin{cases} F'(0;\mu) < 0\\ \mathsf{RA} \mathsf{decreases} \end{cases}$

Comparative Statics: Risk Aversion when $\mu_1 < \mu_2$

Comparative Statics: Risk Aversion when $\mu_1 < \mu_2$

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Lemma

For fixed w > 0,

$$0 < \partial_{\mu}F(w;\mu) < 1/r$$

Efficiency loss increasing in μ

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Lemma

For fixed w > 0,

$$0 < \partial_{\mu}F(w;\mu) < 1/r$$

Efficiency loss increasing in μ

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Lemma

For fixed w > 0,

$$0 < \partial_{\mu}F(w;\mu) < 1/r$$

Efficiency loss increasing in μ

Lemma:

For fixed w > 0,

$$0 < \partial_{\mu} F'(w;\mu)$$

Expected value change increasing in μ

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Lemma

For fixed w > 0,

$$0 < \partial_{\mu}F(w;\mu) < 1/r$$

Efficiency loss increasing in μ

Lemma:

For fixed w > 0,

$$0 < \partial_{\mu} F'(w;\mu)$$

Expected value change increasing in μ

Risk Aversion =
$$-\lambda^2 F''(w;\mu) \propto r \left[\frac{\mu}{r} - F(w;\mu) - w\right] + \frac{\gamma w \left(F'(w;\mu) + r/\gamma\right)}{efficiency loss}$$

Lemma

For fixed w > 0,

$$0 < \partial_{\mu}F(w;\mu) < 1/r$$

Efficiency loss increasing in μ

(i)

Lemma:

For fixed w > 0,

$$0 < \partial_{\mu} F'(w;\mu)$$

Expected value change increasing in μ

Risk Aversion increases in μ (ii) *w* and μ are *complements*

Optimal Contract — Implementation

Securities and Assets

• $M = W/\lambda$ is cash reserve

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- bonds

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- bonds

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- bonds

• **Cash reserves** *M*_t are observable and contractable

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- bonds

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- o bonds

- *Cash reserves M*_t are observable and contractable
- Agent gets fraction λ of **stocks**

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- o bonds

- *Cash reserves M*_t are observable and contractable
- Agent gets fraction λ of *stocks*
- Principal(s) hold fraction 1 λ of stocks and all bonds

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- o bonds

- *Cash reserves M*_t are observable and contractable
- Agent gets fraction λ of *stocks*
- Principal(s) hold fraction 1 λ of stocks and all bonds
- Bond pays continuous *coupon* of $\mu (\gamma r)M_t$

- $M = W/\lambda$ is cash reserve
 - dynamics of M_t from W_t
- stocks
- o bonds

- *Cash reserves M*_t are observable and contractable
- Agent gets fraction λ of *stocks*
- Principal(s) hold fraction 1 λ of stocks and all bonds
- Bond pays continuous *coupon* of $\mu (\gamma r)M_t$
- Stock pays *dividend* $\lambda^{-1} dC$ when $M_t = w^* / \lambda$ [agent controls dividends]
Stock Prices

Stock Price

$$S_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} \lambda^{-1} dC_s \right]$$

but $S_t = \mathcal{S}(M_t)$, so

 $dS_t = rS_t dt + V_t dB_t - \lambda^{-1} dC_t$

where $V_t = S'(M_t)\sigma(\lambda M_t)/S_t = local volatility$

Stock Prices

Stock Price

$$S_t = \mathbf{E}_t \left[\int_t^{\tau} e^{-r(s-t)} \lambda^{-1} dC_s \right]$$

but $S_t = \mathcal{S}(M_t)$, so

 $dS_t = rS_t dt + \mathbf{V}_t dB_t - \lambda^{-1} dC_t$

where $V_t = S'(M_t)\sigma(\lambda M_t)/S_t = local volatility$

BVP for stock prices $rS(m) = \gamma mS'(m) + \frac{1}{2}\sigma^2(\lambda m)S''(m)$ • S(0) = 0• $S'(w^*/\lambda) = 1$

Then,
$$S_t = S(M_t)$$
 and $S(\cdot)$ is

- strictly increasing
- strictly concave \implies continuous
- C² except at finitely many points even though σ(·) discontinuous!

Comparative Statics

● dividend threshold *m*^{*} ↑

- dividend threshold *m*^{*} ↑
- governance = monitoring $\uparrow \forall m$

- dividend threshold m^{*} ↑
- governance = monitoring $\uparrow \forall m$
- stock price $\uparrow \forall m$

- dividend threshold *m*^{*} ↑
- governance = monitoring $\uparrow \forall m$
- stock price ↑ ∀*m*
- credit yield spread $\downarrow \forall m$

Comparative Statics Intuition — Stock Price

Comparative Statics Intuition — Stock Price

• M_t has positive drift on $[0, m_i^*]$

- M_t has positive drift on $[0, m_i^*]$
- greater μ implies lower $\sigma(\cdot)$

- M_t has positive drift on $[0, m_i^*]$
- greater μ implies lower $\sigma(\cdot)$
- M_t more likely to spend time near m_2^* under μ_2 than near m_1^* under μ_1

- M_t has positive drift on $[0, m_i^*]$
- greater μ implies lower $\sigma(\cdot)$
- M_t more likely to spend time near m_2^* under μ_2 than near m_1^* under μ_1
- *M_t* less likely to hit *w* = 0 under μ₂ than μ₁

Comparative Statics Intuition — Stock Price

- M_t has positive drift on $[0, m_i^*]$
- greater μ implies lower $\sigma(\cdot)$
- M_t more likely to spend time near m_2^* under μ_2 than near m_1^* under μ_1
- *M_t* less likely to hit *w* = 0 under μ₂ than μ₁

Comparative Statics Intuition — Stock Price

 $dM_t = \gamma M_t dt - \lambda^{-1} dC_t + \sigma(\lambda M_t) dB_t$

- M_t has positive drift on $[0, m_i^*]$
- greater μ implies lower $\sigma(\cdot)$
- M_t more likely to spend time near m_2^* under μ_2 than near m_1^* under μ_1
- *M_t* less likely to hit *w* = 0 under μ₂ than μ₁

Dynamics: Monitoring increases after drop in stock price (Vafeas 1999)

Bond Prices

Bond Prices

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

• $D_t =$ price of bond

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- D_t = price of bond $D_t = \mathcal{D}(M_t)$

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- $D_t =$ price of bond
- $D_t = \mathcal{D}(M_t)$
- BVP for *D* ...

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- $D_t = \text{price of bond}$
- $D_t = \mathcal{D}(M_t)$
- BVP for *D* ...
- (1 λ)S_t + D_t = market value of securities held by financiers

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- $D_t = \text{price of bond}$
- $D_t = \mathcal{D}(M_t)$
- BVP for \mathcal{D} ...
- $(1 \lambda)S_t + D_t$ = market value of securities held by financiers
- $F(\lambda M_t) + M_t$ = value of assets generating cash flow

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- $D_t = \text{price of bond}$
- $D_t = \mathcal{D}(M_t)$
- BVP for \mathcal{D} ...
- $(1 \lambda)S_t + D_t$ = market value of securities held by financiers
- $F(\lambda M_t) + M_t$ = value of assets generating cash flow

$$D_t = \mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} [\mu - (\gamma - r) M_s] ds \right]$$

- $D_t = \text{price of bond}$
- $D_t = \mathcal{D}(M_t)$
- BVP for \mathcal{D} ...
- $(1 \lambda)S_t + D_t$ = market value of securities held by financiers
- $F(\lambda M_t) + M_t$ = value of assets generating cash flow

Proposition

$$(1-\lambda)S_t + D_t > F(\lambda M_t) + M_t$$

market value

true value

Difference =
$$\mathbf{E}_t \left[\int_t^\tau e^{-r(s-t)} \rho(\sigma_s) ds \right]$$
 = monitoring costs

•
$$X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$$

- $X_t = 1 \mathbf{E}_t [e^{-r\tau}]$
 - expected discounted extinction time

• $X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$

- expected discounted extinction time
- normalised, so $X_t \in (0, 1)$

• $X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$

- expected discounted extinction time
- normalised, so $X_t \in (0, 1)$
- **Credit yield spread** ζ_t on \$1 coupon in perpetuity is s.t.

$$\int_t^\infty e^{-(r+\zeta_t)(s-t)} ds = \mathsf{E}_t \left[\int_t^\tau e^{-r(s-t)} ds \right]$$

• $X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$

- expected discounted extinction time
- normalised, so $X_t \in (0, 1)$
- **Credit yield spread** ζ_t on \$1 coupon in perpetuity is s.t.

$$\int_t^\infty e^{-(r+\boldsymbol{\zeta}_t)(s-t)} ds = \mathsf{E}_t \left[\int_t^\tau e^{-r(s-t)} ds \right]$$

• Then,

$$\zeta_t = \frac{r(1 - X_t)}{X_t} = \text{ credit yield spread}$$

• $X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$

- expected discounted extinction time
- normalised, so $X_t \in (0, 1)$
- **Credit yield spread** ζ_t on \$1 coupon in perpetuity is s.t.

$$\int_{t}^{\infty} e^{-(r+\boldsymbol{\zeta}_{t})(s-t)} ds = \mathbf{E}_{t} \left[\int_{t}^{\tau} e^{-r(s-t)} ds \right]$$

• Then,

$$\zeta_t = \frac{r(1 - X_t)}{X_t} = \text{ credit yield spread}$$

• BVP for credit yield spread

• $X_t = 1 - \mathbf{E}_t [e^{-r\tau}]$

- expected discounted extinction time
- normalised, so $X_t \in (0, 1)$
- **Credit yield spread** ζ_t on \$1 coupon in perpetuity is s.t.

$$\int_{t}^{\infty} e^{-(r+\boldsymbol{\zeta}_{t})(s-t)} ds = \mathbf{E}_{t} \left[\int_{t}^{\tau} e^{-r(s-t)} ds \right]$$

• Then,

$$\zeta_t = \frac{r(1 - X_t)}{X_t}$$
 = credit yield spread

- BVP for credit yield spread
 - $\zeta_t = \mathcal{Z}(M_t) \dots$

Comparative Statics — Extinction Time

Comparative Statics — Extinction Time

Extensions

• Stochastic drift μ_t

- Stochastic drift μ_t
 - Expose agent to observable risk

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t

Extensions

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t
- Measure of Governance needs

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t
- Measure of Governance needs

V_t = local volatility of stock price via **Dupire's Formula**

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t
- Measure of Governance needs

- V_t = local volatility of stock price via **Dupire's Formula**
- $\Delta_t = \text{Delta of compensation}$

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t
- Measure of Governance needs

- V_t = local volatility of stock price via **Dupire's Formula**
- $\Delta_t = \text{Delta of compensation}$
- $S_t = \text{stock price}$

- Stochastic drift μ_t
 - Expose agent to observable risk
 - payment boundary depends on W_t and μ_t
- Measure of Governance needs

- V_t = local volatility of stock price via **Dupire's Formula**
- $\Delta_t = \text{Delta of compensation}$
- $S_t = \text{stock price}$
- General moral hazard and monitoring

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

 monitoring and pay-sensitivity are complements

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

- monitoring and pay-sensitivity are complements
- sensitivity β increasing in optimal action

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

- monitoring and pay-sensitivity are complements
- sensitivity β increasing in optimal action

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

- monitoring and pay-sensitivity are complements
- sensitivity β increasing in optimal action

Follow Sannikov

Output $dX_t = a_t dt + \sigma_t dB_t$ Effort cost $h(a) = \frac{1}{2}a^2$ IC $\beta_t = a_t$

$$rF(w) = \max_{\sigma,c,\beta} \left[r(\underset{=\beta}{a} - c) + rF'(w)(w - u(c) + \frac{1}{2} \underset{=\beta^2}{a^2}) + \frac{1}{2}F''(w)r^2\beta^2\sigma_t^2 \right]$$
(HJB)

Milgrom-Roberts

when pay-sensitivity β is higher, monitoring is also higher (because σ is correspondingly lower)

- monitoring and pay-sensitivity are complements
- sensitivity β increasing in optimal action

Follow Sannikov

Output $dX_t = a_t dt + \sigma_t dB_t$ Effort cost $h(a) = \frac{1}{2}a^2$ IC $\beta_t = a_t$

Monitoring Intensity

$$\boldsymbol{\beta} = -\left[r\sigma^{2}\boldsymbol{F}''(\boldsymbol{w}) + \boldsymbol{F}'(\boldsymbol{w})\right]^{-1}$$

$$rF(w) = \max_{\sigma,c,\beta} \left[r(\underset{=\beta}{a} - c) + rF'(w)(w - u(c) + \frac{1}{2} \underset{=\beta^2}{a^2}) + \frac{1}{2}F''(w)r^2\beta^2\sigma_t^2 \right]$$
(HJB)

Comparative Statics via Comparison Theorem

Comparative Statics via Comparison Theorem

Comparative Statics via Comparison Theorem

Comparison Theorem

Doesn't require F, G to be C²; Ψ can be nonlinear

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

Comparison Theorem

- Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$
- Doesn't require F, G to be C²; Ψ can be nonlinear

- Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$
- Doesn't require F, G to be C^2 ; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

- Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$
- Doesn't require F, G to be C^2 ; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

•
$$S(0) = 0$$

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then

 $G(m) \leq F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then

 $G(m) \leq F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then,

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then

 $G(m) \leq F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then, • $m_1^{\star} < m_2^{\star}$

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then, • $m_1^* < m_2^*$ • $\sigma_2^*(m) \leqslant \sigma_1^*(m)$

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then, • $m_1^{\star} < m_2^{\star}$ • $\sigma_2^{\star}(m) \leq \sigma_1^{\star}(m)$ • $1 = S_1'(m_1^{\star}) < S_2'(m^{\star})$

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then $G(m) \le F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then,

•
$$m_1^{\star} < m_2^{\star}$$

•
$$\sigma_2^*(m) \leq \sigma_1^*(m)$$

•
$$1 = S'_1(m_1^*) < S'_2(m^*)$$

• S_1 is **subsolution** to ODE under σ_2^* , so

Let $F, G : [0, m^{\dagger}] \rightarrow \mathbb{R}$ and $\Psi(m, F, F', F'') \ge 0$ $\Psi(m, G, G', G'') \le 0$ If $G(m^{\dagger}) \le F(m^{\dagger})$, then

 $G(m) \leq F(m) \quad \forall m \in [0, m^{\dagger}]$

Doesn't require F, G to be C²; Ψ can be nonlinear

Example: Stock Prices and increase in μ BVP for stock prices

•
$$r \mathcal{S}(m) = \gamma m \mathcal{S}'(m) + \frac{1}{2} \sigma^2(\lambda m) \mathcal{S}''(m)$$

Let $\mu_1 < \mu_2$. Then,

•
$$m_1^{\star} < m_2^{\star}$$

•
$$\sigma_2^*(m) \leq \sigma_1^*(m)$$

•
$$1 = S'_1(m_1^*) < S'_2(m^*)$$

- S_1 is **subsolution** to ODE under σ_2^* , so
- $S_1(m) \leq S_2(m) \forall m$

Conclusion

Conclusion

• Unified framework for asset pricing, compensation, and corporate governance

Conclusion

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations
- Extensions:

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations
- Extensions:
 - exogenous risk

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations
- Extensions:
 - exogenous risk
 - general moral hazard

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations
- Extensions:
 - exogenous risk
 - general moral hazard
 - measurement of governance

- Unified framework for asset pricing, compensation, and corporate governance
- Asset price depends on balance sheet as well as governance structure ...
- Compensation depends on balance sheet as well as governance structure
- ... and vice versa
- Rationalises correlations
- Extensions:
 - exogenous risk
 - general moral hazard
 - measurement of governance
 - general analysis of credit risk

Thank you!

SOX and Public Policy

SOX and Public Policy

$$\Delta_{\text{sox}} \mathcal{H}(m) := \underbrace{\Delta_{\text{gov}} \mathcal{H}(m)}_{\text{governance}} + \underbrace{\Delta_{\mu} \mathcal{H}(m)}_{\text{profitability}}$$

$$\Delta_{\text{sox}} \mathcal{H}(m) := \underbrace{\Delta_{\text{gov}} \mathcal{H}(m)}_{\text{governance}} + \underbrace{\Delta_{\mu} \mathcal{H}(m)}_{\text{profitability}}$$

$$\Delta_{\text{sox}} \mathcal{H}(m) := \underbrace{\Delta_{\text{gov}} \mathcal{H}(m)}_{\text{governance}} + \underbrace{\Delta_{\mu} \mathcal{H}(m)}_{\text{profitability}}$$

$$\Delta_{\text{sox}}\mathcal{H}(m) := \underbrace{\Delta_{\text{gov}}\mathcal{H}(m)}_{\text{governance}} + \underbrace{\Delta_{\mu}\mathcal{H}(m)}_{\text{profitability}}$$

Effect of SOX

$$\Delta_{\text{sox}} \hat{\mathcal{F}}(m) < 0$$

$$\Delta_{\text{sox}} m^{\star} = \underline{\Delta}_{\text{gov}} m^{\star} + \underline{\Delta}_{\mu} m^{\star}_{<0}$$

$$\Delta_{\text{sox}} \mathcal{S}(m) = \underline{\Delta}_{\text{gov}} \mathcal{S}(m) + \underline{\Delta}_{\mu} \mathcal{S}(m)_{<0}$$

$$\Delta_{\text{sox}} \mathcal{Z}(m) = \underline{\Delta}_{\text{gov}} \mathcal{Z}(m) + \underline{\Delta}_{\mu} \mathcal{Z}(m)_{<0}$$

SDE for *W*

Continuation Utility

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

$$\bigvee_{t} \cdot \Delta_{t} \cdot S_{t} = \lambda \sigma_{t}$$
local governance

• $V_t = local volatility$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

- $V_t = local volatility$
- Δ_t = Delta of compensation

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

Measurement

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

Measurement

• V_t via **Dupire's formula**

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma_t$$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}' \big(\mathcal{S}^{-1}(\mathcal{S}_t) \big) \sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t)) / \mathcal{S}_t$

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma$$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}'(\mathcal{S}^{-1}(\mathcal{S}_t))\sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t))/\mathcal{S}_t$
 - Local volatility of stock price

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma$$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}'(\mathcal{S}^{-1}(\mathcal{S}_t))\sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t))/\mathcal{S}_t$
 - Local volatility of stock price
- Δ_t measured in many ways

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma$$

• V_t = local volatility

- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}'(\mathcal{S}^{-1}(\mathcal{S}_t))\sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t))/\mathcal{S}_t$
 - Local volatility of stock price
- Δ_t measured in many ways
 - Provide bounds as function of μ , λ

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma$$

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}'(\mathcal{S}^{-1}(\mathcal{S}_t))\sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t))/\mathcal{S}_t$
 - Local volatility of stock price
- Δ_t measured in many ways
 - Provide bounds as function of μ , λ
 - Bounds are monotonic

$$\underbrace{V_t \cdot \Delta_t \cdot S_t}_{\text{local governance}} = \lambda \sigma$$

- V_t = local volatility
- Δ_t = Delta of compensation
- $S_t = \text{stock price}$

Measurement

- V_t via **Dupire's formula**
 - $\mathcal{V}_t = \mathcal{S}'(\mathcal{S}^{-1}(\mathcal{S}_t))\sigma(\lambda \mathcal{S}^{-1}(\mathcal{S}_t))/\mathcal{S}_t$
 - Local volatility of stock price
- Δ_t measured in many ways
 - Provide bounds as function of μ , λ
 - Bounds are monotonic
- Induces Governance Smile ...