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PERSISTENT PRIVATE INFORMATION

BY NOAH WILLIAMS1

This paper studies the design of optimal contracts in dynamic environments where
agents have private information that is persistent. In particular, I focus on a continuous-
time version of a benchmark insurance problem where a risk-averse agent would like to
borrow from a risk-neutral lender to stabilize his utility. The agent privately observes a
persistent state variable, typically either income or a taste shock, and he makes reports
to the principal. I give verifiable sufficient conditions showing that incentive-compatible
contracts can be written recursively, conditioning on the report and two additional state
variables: the agent’s promised utility and promised marginal utility of the private state.
I then study two examples where the optimal contracts can be solved in closed form,
showing how persistence alters the nature of the contract. Unlike the previous discrete-
time models with independent and identically distributed (i.i.d.) private information,
the agent’s consumption under the contract may grow over time. Furthermore, in my
setting the efficiency losses due to private information increase with the persistence of
the private information, and the distortions vanish as I approximate an i.i.d. environ-
ment.

KEYWORDS: Dynamic contracting, continuous time, stochastic control, principal-
agent model.

1. INTRODUCTION

PRIVATE INFORMATION is an important component of many economic environ-
ments and in many cases that information is persistent. Incomes of individuals
from one period to the next are highly correlated and can be difficult for an out-
sider to verify. Similarly, a worker’s skill at performing a task, a manager’s abil-
ity in leading a firm, and a firm’s efficiency in producing goods are all likely to
be highly persistent and contain at least some element of private information.
While models of private information have become widespread in many areas
of economics, with very few exceptions, previous research has focused on situ-
ations where the private information has no persistence. But estimates suggest
that idiosyncratic income streams and individual skills, which likely have large
private information components, are highly persistent.2 In this paper I analyze
a benchmark dynamic contracting model with persistent private information.
Working in continuous-time, I develop general sufficient conditions which al-
low for a recursive representation of incentive-compatible contracts. This al-
lows me to develop a characterization of such contracts, which has been lack-
ing, and makes a range of new and empirically relevant applications amenable
for analysis. I use my characterization to explicitly solve for optimal contracts

1I thank Dilip Abreu, Katsuhiko Aiba, Narayana Kocherlakota, Rui Li, Chris Sleet, and Ted
Temzelides for helpful comments. I also especially thank the co-editor and two anonymous refer-
ees for comments that greatly improved the paper. Financial support from the National Science
Foundation is gratefully acknowledged.

2See, for example, Storesletten, Telmer, and Yaron (2004) and Meghir and Pistaferri (2004).
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in some key examples, showing how increasing the persistence of the private
information adversely affects the degree of risk sharing.

In particular, I focus on a continuous-time dynamic contracting relationship
between a risk-neutral principal and a risk-averse agent, where the agent pri-
vately observes a payoff-relevant persistent state variable. I start with a rela-
tively general setting, which maps into applications similar to classic papers in
the literature. One version of the model is a classic insurance problem along
the lines of the Green (1987) and Thomas and Worrall (1990), where a risk-
averse agent would like to borrow from a risk-neutral lender to stabilize his in-
come stream. The income stream is private information to the borrower and is
persistent. Another version of the general model is an insurance problem simi-
lar to Atkeson and Lucas (1992), where the agent is hit with privately observed
preference shocks which alter his marginal utility of consumption. My general
characterization, which applies to both applications, adapts the continuous-
time methods developed in Williams (2009) for hidden action problems to han-
dle models with private information.

One of the main contributions of this paper is to provide a set of necessary
and sufficient conditions which ensure that a contract is incentive-compatible.
To do so, I apply a stochastic maximum principle due to Bismut (1973, 1978) to
derive the agent’s optimality conditions facing a given contract, which in turn
provide conditions that an incentive-compatible contract must satisfy. I show
that such contracts must be history dependent, but this dependence is encap-
sulated in two endogenous state variables: the agent’s promised utility and
promised marginal utility under the contract.

The use of promised utility as a state variable in contracting is now well
known, but when there is persistent private information, incentive compati-
bility requires more conditioning information.3 The difficulty with persistent
information is that deviations from truth-telling alter agents’ private evalua-
tions of future outcomes; put differently, agents’ continuation types are no
longer public information. I show that in my setting, incentive compatibility
can be ensured by conditioning on a discounted expected marginal utility state
variable, which captures the expected future shadow value of the private in-
formation. The discount rate in this state variable includes a measure of the
persistence. More persistent information is longer lived and so has a greater
impact on future evaluations, while as the persistence vanishes, this additional
state variable becomes unnecessary.

The other main contribution of the paper is to explicitly solve for optimal
contracts in some special cases of interest. In particular, I study a hidden en-

3The use of promised utility as a state variable follows the work of Abreu, Pearce, and Stac-
chetti (1986, 1990) and Spear and Srivastrava (1987). It was used by Green (1987) and Thomas
and Worrall (1990) in settings like mine, and by Sannikov (2008) in a continuous-time model.
Similar marginal utility states have been used by Kydland and Prescott (1980) and in related con-
texts by Werning (2001), Abraham and Pavoni (2008), and Kapicka (2006), as well as my earlier
paper (Williams (2009)).
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dowment model where the agent has exponential utility and a model with per-
manent private taste shocks where the agent has power utility over consump-
tion. The hidden endowment model highlights the relationship between the
persistence of the private information and the magnitude of the distortions
this information causes. The largest distortions occur when the private infor-
mation is permanent. In this case, the optimal contracts entail no risk shar-
ing, consisting only of a deterministic transfer which changes the time profile
of the agent’s consumption. However, as information becomes less persistent,
risk sharing increases and the agent’s consumption becomes more stable. In
particular, in the i.i.d. limit, I obtain efficiency and complete stabilization of
consumption. This result differs from the discrete-time i.i.d. models in the lit-
erature, which clearly have nonzero distortions. But I show that as the period
length shrinks in a discrete-time model, the distortions shrink as well. Thus the
existing results are consistent with my findings. The private taste shock model
has much of the same structure, but it becomes intractable analytically outside
the case of permanent shocks.

My results differ in some fundamental ways from those in the literature. In
particular, Rogerson (1985) and Golosov, Kocherlakota, and Tsyvinski (2003)
showed in discrete time that an “inverse Euler equation” governs consumption
dynamics in private information models. Technically, this implies that the in-
verse of the agent’s marginal utility of consumption is a martingale. Closely
related are the “immiseration” results of Thomas and Worrall (1990) and
Atkeson and Lucas (1992) which imply that the agent’s promised utility tends
to minus infinity under the optimal contract. In my examples, these results
fail—the agent’s promised utility follows a martingale and consumption has a
positive drift under the optimal contract.

As I discuss in more detail below, these differences rely at least partly on
differences in the environments. In the discrete analogue of my model, when
deciding what to report in the current period, the agent trades off current con-
sumption and future promised utility. In my continuous-time formulation, the
agent’s private state follows a process with continuous paths and the principal
knows this. Thus in the current period the agent only influences the future in-
crements of the reported state.4 Thus current consumption is independent of
the current report and all that matters for the reporting choice is how future
transfers are affected. As the reporting problem and, hence, the incentive con-
straints become fully forward-looking, optimal allocations no longer involve
the balance of current and future distortions that the inverse Euler equation
embodies. By contrast, in a moral hazard setting with hidden effort such as
Williams (2009), an inverse Euler equation does hold. When effort is costly,

4As discussed below, this is a requirement of absolute continuity. If the agent were to report
a process which jumped discretely at any instant, the principal would be able to detect that his
report was a lie.
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deviations from the behavior specified by the contract have instantaneous util-
ity effects which are absent in the hidden information model. Thus the inverse
Euler equation is sensitive to the source of the information frictions.

Besides my own previous work, the closest paper in terms of technique is
DeMarzo and Sannikov (2006), who also studied a continuous-time hidden
information problem.5 My conversion of the reporting problem to a hidden
action problem follows their approach. However, they focused on the case
where agents are risk-neutral and there is no persistence in information. My
paper is more general along these dimensions. One particular difference is that
given the risk neutrality, they can define cash flows—their source of private
information—as increments of a Brownian motion with constant drift. Thus
private information in their case is i.i.d. However, in my environment it is more
natural, and more consistent with the literature, to define the private state as
the level of a diffusion process. As all diffusions are persistent, private infor-
mation is always persistent in my environment.6

In addition, there are a few recent papers which studied models with per-
sistent private information. In a discrete-time setting, Battaglini (2005) and
Tchistyi (2006) characterized contracts between risk-neutral agents when the
unobserved types switch according to a Markov chain. Their results rely heavily
on risk neutrality and thus do not extend to the classic insurance issues which
I address here. In their analysis of disability insurance, Golosov and Tsyvinski
(2006) studied a particularly simple form of persistent information, where the
type enters an absorbing state. Again, their results heavily exploit this particu-
lar structure. More closely related to the present paper, Zhang (2009) studied
a continuous-time hidden information model with two types that switch ac-
cording to a continuous-time Markov chain. His model is a continuous-time
version of Fernandes and Phelan (2000), who considered a relatively general
approach for dealing with history dependence in dynamic contracting models.
Both Zhang (2009) and Fernandes and Phelan (2000) allow for persistence
in the hidden information, at the cost of a state space which grows with the
number of types. In contrast, my approach deals with a continuum of types
and requires two endogenous state variables. This is achieved by exploiting
the continuity of the problem to introduce a state variable which captures the
shadow value (in marginal utility terms) of the hidden information. Thus my
approach is analogous to a first-order approach to contracting.7

Kapicka (2006) considered a related first-order approach in a discrete-time
model. As I discuss in more detail in Section 8, we both use similar ideas to

5Biais, Mariotti, Plantin, and Rochet (2007) studied a closely related discrete-time model and
its continuous-time limit.

6As I discuss in Section 2.2 below, the i.i.d. case can be approximated by considering a limit of
a mean reverting process as the speed of mean reversion goes to infinity.

7See Williams (2009) for more discussion of the first-order approach to contracting in contin-
uous time.
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arrive at recursive representations of contracts, but our state variables differ.
Kapicka (2006) took the agent’s promised marginal utility of consumption as
his additional state variable, while in my approach, the marginal utility of the
hidden state (discounted by the persistence of the private information) is the
relevant state variable. Although these state variables agree in some cases,
I present an example below where they differ. In addition, my proof of the ap-
plicability of the first-order approach is more complete and direct, and I show
how to verify my sufficient conditions in applied settings. Our implications for
contracts differ as well. Kapicka (2006) showed how optimal contracts may sig-
nificantly distort the agent’s consumption–savings decision. However, I show
that when shocks are permanent, this channel need not be distorted. In my ex-
ample, the only way the principal can ensure truthful revelation is to make the
transfer independent of the report. Such a contract does not distort the agent’s
intertemporal decisions, but it clearly does not insure the agent either.

The persistence of private information gives the contracting problem an
adverse selection component as well. In a continuous-time setting, Sannikov
(2007) and Cvitanić and Zhang (2007) studied contracting problems with ad-
verse selection. Both focused on cases where there are two possible fixed types
of agents and, apart from the agent’s type, there is no persistence in private
information. While I do not emphasize the screening component of contracts,
my methods could be applied to screening models where agents’ types vary
over time.

The rest of the paper is organized as follows. The next section describes the
model and discusses a key change of variables which is crucial for analysis.
Section 3 analyzes the agent’s reporting problem when facing a given contract,
deriving necessary optimality conditions. The two endogenous state variables
arise naturally here. Section 4 characterizes truthful reporting contracts, pre-
senting sufficient conditions which ensure incentive compatibility. Section 5
presents a general approach to solve for optimal contracts. Then in Section 6,
I consider a hidden endowment example where the optimal contract can be de-
termined in closed form. I show how persistence matters for the contract and
contrast our results with some of the others in the literature. Section 8 studies a
related model with private taste shocks, which can also be solved explicitly with
permanent shocks. Finally, Section 9 offers some brief concluding remarks.

2. THE MODEL

2.1. Overview

The model consists of a risk-averse agent who privately observes a state vari-
able which affects his utility and who receives transfers from a risk-neutral prin-
cipal to smooth his consumption. The privately observed state variable can be
an endowment process as in Thomas and Worrall (1990) or a taste shock as in
Atkeson and Lucas (1992). If the principal could observe the private state, then
he could absorb the risk and fully stabilize the agent’s utility. However, with the
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state being the private information of the agent, the principal must rely on the
agent’s reports. Under the full-information contract, the agent would have an
incentive to lie, for example, reporting that his income is lower than it really
is. Thus the key problem is to design a contract which provides the agent the
incentive to truthfully report his information. Relative to the literature, my key
innovation is to allow for persistence in the agent’s privately observed state.

2.2. Basic Layout

I start by considering a finite horizon [0�T ] and later let T → ∞. I use a
plain letter to denote a whole path of a variable; thus, for instance, b = (bt)

T
t=0.

I suppose that the privately observed variable b is given by a Markov diffu-
sion process defined on a probability space with a Brownian motion W , which
evolves as

dbt = μ(bt)dt + σ dWt�

I assume that σ > 0 is constant and that the drift is affine,

μ(b) = μ0 − λb�

with λ ≥ 0. All the results in the paper could be easily extended to the more
general case where the drift μ : R → R is twice continuously differentiable,
(weakly) decreasing, and (weakly) concave. While this extension may be useful
in applications, it adds little conceptually to the issues at hand and only leads
to more cumbersome notation.8

With λ = 0, b is a Brownian motion with drift, so its increments are i.i.d.
and shocks have permanent effects.9 On the other hand, with λ > 0, b is
an Ornstein–Uhlenbeck process (see Karatzas and Shreve (1991)). This is a
continuous-time version of a stationary Gausssian autoregressive process with
the properties

E(bt |b0)= μ0

λ
+

(
b0 − μ0

λ

)
e−λt�

Cov(bt� bs|b0)= σ2

2λ
(
e−λ|s−t| − e−λ(s+t)

)
�

Thus μ0/λ gives the mean of the stationary distribution, while λ governs the
rate of mean reversion and hence the persistence of the process. As mentioned

8Note that I allow b to affect utility in a general way, so b may be a transformation of an
underlying state variable.

9As noted above, if we were to follow DeMarzo and Sannikov (2006), then bt would be the
cumulative state process and, hence, i.i.d. increments would correspond to an i.i.d. state variable.
However, apart from the risk-neutral case they consider, defining utility over the increments of a
diffusion process is problematic.
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above, the private state cannot be i.i.d., but we can approximate an i.i.d. process
by setting σ = σ̄

√
λ and μ0 = μ̄λ for some σ̄� μ̄ > 0, and letting λ → ∞. The

limit is an i.i.d. normal process with mean μ̄ and variance σ̄2/2.
The key issue in this model, of course, is that the agent alone observes bt ,

while the principal only observes the agent’s report of it, which I denote yt . To
simplify matters, I assume that the agent cannot overreport the true state, so
yt ≤ bt . In most settings, the relevant incentive constraint guards against un-
derreporting, so such a constraint is not overly restrictive.10 When the private
state variable is the agent’s endowment, this assumption can be motivated by
requiring the agent to deposit a portion of his endowment in an account which
the principal observes. The good is nonstorable and the agent cannot manufac-
ture additional endowments, so the deposit (or report) is a verifiable statement
of at most the entire endowment.

The fact that the agent’s private state has continuous sample paths is key
to our analysis. This continuity allows us to use local information to summa-
rize histories, it gives structure to the types of reports the agent can make, and
together with the concavity of utility, it allows us to map local optimality condi-
tions into global ones. Other types of processes which allow for jumps may be
useful in some applications (such as Zhang (2009)). But allowing for jumps is
more complex, as the contract would require more global information. Models
with continuous information flows provide a useful benchmark and are natural
in many applications. When the private state is the hidden endowment, simi-
lar continuous specifications have been widely used in asset pricing following
Breeden (1979). Although lumpiness may be important for some types of in-
come, business or financial income may involve frequent flows which may be
difficult for an intermediary to observe. Similarly, when the private state is a
preference shock, we focus not on lumpiness due to, say, discrete changes in
household composition, but rather on more frequent, smaller fluctuations in
tastes or skills.

The agent’s information can be summarized by the paths of W , which induce
Wiener measure on the space C[0�T ] of continuous functions of time. The
agent’s reporting strategy is thus a predictable mapping y :C[0�T ] → C[0�T ].
Denote this mapping y(ω) and its time t component yt(ω) which is measurable
with respect to Bt , the Borel σ-algebra of C[0�T ] generated by {Ws : s ≤ t}. The
principal observes y only and thus his information at date t can be represented
via Yt , the Borel σ-algebra of C[0�T ] generated by {ys : s ≤ t}. I assume that
the private state is initialized at a publicly known value b0 and that the principal
knows the process which the state follows (i.e., he knows μ and σ), but he does
not observe the realizations of it.

10In our setting, this restriction facilitates analyzing the incentive constraints. Removing the
restriction at the outset is difficult due to the linearity of agent’s reporting problem.
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As the principal obtains continuous reports from the agent, the agent is not
free to choose an arbitrary reporting strategy. In particular, based on the re-
ports, the principal can construct a process W y

t which evolves as

dW
y
t = dyt −μ(yt)dt

σ
�(1)

Under a truthful reporting strategy yt = bt , clearly we have W
y
t = Wt . Thus the

agent is restricted to reporting strategies which ensure that W y
t is a Brownian

motion with respect to the principal’s information set. If he were to choose
a reporting strategy which did not make W

y
t a Brownian motion, say, for in-

stance, he reported a constant endowment for a strictly positive length of time
(which has probability zero), then the principal would detect this lie and would
be able to punish him.

Formally, the agent’s report y must be absolutely continuous with respect
to his true state b. Hence via the Girsanov theorem and related results (see
Chapters 6 and 7 of Liptser and Shiryaev (2000), for example), this means that
the agent’s reporting process is equal to the true state process plus a drift,

dyt = dbt +Δt dt�

where Δt is a process adapted to the agent’s information set. Since the agent
can report (or deposit) at most his entire state, we must have Δt ≤ 0. Integrat-
ing this evolution and using y0 = b0, we see that the report of the private state
is equal to the truth plus the cumulative lies,

yt = bt +
∫ t

0
Δs ds ≡ bt +mt�

where we define mt ≤ 0 as the “stock of lies.” With this notation, we can then
write the evolution of the agent’s reporting and lying processes as

dyt = [μ(yt −mt)+Δt]dt + σ dWt�(2)

dmt = Δt dt�(3)

with y0 = b0 and m0 = 0. The principal observes yt , but cannot separate Δt

from Wt and thus cannot tell whether a low report was due to a lie or a poor
shock realization. Moreover, the stock of lies mt is a hidden state which is
unobservable to the principal, but influences the evolution of the observable
report state.

In our environment, a contract is a specification of payments from the prin-
cipal to the agent conditional on the agent’s reports. The principal makes
payments to the agent throughout the period s :C[0�T ] → C[0�T ] which are
adapted to his information {Yt}, as well as a terminal payment ST :C[0�T ] → R

which is YT -measurable. This is a very general representation, allowing almost
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arbitrary history dependence in the contract. We will study the choice of the
optimal contract s by the principal, finding a convenient representation of the
report history.

2.3. A Change of Variables

As the contract is history dependent, the agent’s utility at any given time
will, in general, depend on the whole past history of reports. This makes direct
analysis difficult, as standard dynamic programming methods are not applica-
ble. This lack of a recursive structure is well known in contracting models, and
the seminal works of Spear and Srivastrava (1987), Green (1987), and Abreu,
Pearce, and Stacchetti (1990) show how to make the problem recursive by en-
larging the state space. We use the agent’s optimality conditions to derive such
additional necessary state variables.

To do so, as in Williams (2009), I follow Bismut (1978) and change state
variables to focus on the distribution of observed reports. Rather than directly
analyzing the agent’s choice of what to report at each date, it is easier to view
the agent as choosing a probability distribution over the entire reporting pro-
cess that the principal observes. Alternative reporting strategies thus change
the distribution of observed outcomes.

A key simplification of our continuous-time setting is the natural mapping
between probability measures and Brownian motions. The following calcula-
tions rely on standard stochastic process results, as in Liptser and Shiryaev
(2000). To begin, fix a probability measure P0 on C[0�T ] and let {W 0

t } be a
Wiener process under this measure, with {Ft} the completion of the filtration
generated by it. Under this measure, the agent reports that his private state
follows a martingale,

dyt = σ dW 0
t �(4)

with y0 given. Different reporting choices alter the distribution over observed
outcomes in C[0�T ]. In particular, for any feasible lying choice Δ= {Δt}, define
the family of Ft-predictable processes

Γt(Δ) = exp
(∫ t

0

μ(ys −ms)+Δs

σ
dW 0

s(5)

− 1
2

∫ t

0

(
μ(ys −ms)+Δs

σ

)2

ds

)
�

Γt is an Ft martingale with E0[ΓT(Δ)] = 1, where E0 represents expectation
with respect to P0. Thus, by the Girsanov theorem, we define a new measure
PΔ via

dPΔ

dP0
= ΓT(Δ)�
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and the process W Δ
t defined by

W Δ
t = W 0

t −
∫ t

0

μ(ys −ms)+Δs

σ
ds(6)

is a Brownian motion under PΔ. For the truthful reporting strategy Δ∗
t ≡ 0, we

denote PΔ∗ = P∗, with corresponding Brownian motion W ∗
t � Hence each effort

choice Δ results in a different Brownian motion, similar to what we constructed
above in (1). However, the Brownian motion W

y
t is based on the principal’s

observations of y , assuming truthful reporting. Here the Brownian motion W Δ
t

is based on the agent’s (full) information, as a means to depict the distribution
PΔ over observed reports.

The density process Γt captures the effect of the agent’s lies on observed
outcomes, and we take it rather than yt as the key state variable. Although
the contract depends on the entire history of reports, this density allows us to
average over that history in a simple manner. Using (5), the density evolves as

dΓt = Γt

σ
[μ(yt −mt)+Δt]dW 0

t �(7)

with Γ0 = 1. The stock of lies mt is the other relevant state variable for the
agent, and it is convenient to analyze its evolution under the transformed prob-
ability measure. Thus we take zt = Γtmt , which captures covariation between
reports and the stock of lies, as the relevant hidden state variable. Simple cal-
culations show that it follows

dzt = ΓtΔt dt + zt

σ
[μ(yt −mt)+Δt]dW 0

t �(8)

with z0 = 0. By changing variables from (y�m) to (Γ� z), the agent’s reporting
problem is greatly simplified. Instead of depending on the entire past history
of the state yt , the problem only depends on contemporaneous values of the
states Γt and zt . The history y is treated as an element of the probability space.
This leads to substantial simplifications, as I show below.

3. THE AGENT’S REPORTING PROBLEM

In this section, I derive optimality conditions for an agent facing a given con-
tract. The agent’s preferences take a standard time additive form, with discount
rate ρ, smooth concave flow utility u(s�b), and terminal utility U(s�b) defined
over the payment and the private state. Below I focus on the special cases
where b is the agent’s endowment, so u(s�b) = v(s+b), and where b is the log
of a taste shock, so u(s�b) = v(s)exp(−b) where v(s) ≤ 0. I suppose that the
agent has the option at date zero to reject a contract and remain in autarky.
This gives a participation constraint that the utility the agent achieves under
the contract must be greater than his utility under autarky, denoted V a(b0).
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However, after date zero, both the parties are committed to the contract and
cannot leave it.

The agent’s preferences for an arbitrary reporting strategy {Δt} can be writ-
ten

V (y; s) = EΔ

[∫ T

0
e−ρtu(st(y)� yt −mt)dt + e−ρTU(ST (y)� yT −mT)

]

= E0

[∫ T

0
e−ρtΓtu(st(y)� yt −mt)dt

+ e−ρTΓTU(ST (y)� yT −mT)

]
�

Here the first line uses the contract, substitutes y −m for b, and takes the ex-
pectation with respect to the measure PΔ over reporting outcomes. The second
line uses the density process defined above. The agent takes the contract s and
the evolution (7)–(8) as given, and solves

sup
{Δt≤0}

V (y; s)�

Under the change of variables, the agent’s reporting problem is a control
problem with random coefficients. As in Williams (2009), I apply a stochastic
maximum principle from Bismut (1973, 1978) to derive the agent’s necessary
optimality conditions. I first derive all conditions using the new variables (Γ� z)
and then express everything in terms of the original states (y�m). Analogous
to the deterministic Pontryagin maximum principle, I define a (current-value)
Hamiltonian function which the optimal control will maximize. As in the deter-
ministic theory, associated with the state variables are co-state variables which
have specified terminal conditions. However, to respect the stochastic infor-
mation flow and satisfy the terminal conditions, the co-states are now pairs of
processes which satisfy backward stochastic differential equations. Thus I in-
troduce (q�γ) and (p�Q) as the co-states associated with the state Γ and with
the state z, respectively. In each pair, the first co-state multiplies the drift of
the state, while the second multiplies the diffusion term. Thus the Hamiltonian
is given by

H(Γ� z) = Γ u(s(y)� y − z/Γ )

+ (Γ γ +Qz)(μ(y − z/Γ )+Δ)+pΓ Δ�

The Hamiltonian captures the instantaneous utility flows to the agent. Here we
see that a lie Δ affects the future increments of the likelihood of outcomes Γ ,
as well as the hidden state variable z. Moreover, these state variables matter
for the agent’s future utility evaluations, both through the direct dependence of
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the utility function on the hidden state and through the change in the likelihood
of alternative reporting paths.

The agent’s optimal choice of his report perturbation Δ≤ 0 is given by max-
imizing the Hamiltonian, and the evolution of the co-state variables is given
by differentiating the Hamiltonian. To simplify matters, I invoke the revelation
principle and focus on contracts which induce truthful revelation. Thus we have
Δt ≡ 0, mt ≡ 0, and yt = bt . As the Hamiltonian H is linear Δ and Γ ≥ 0, so as
to have a truthful current report Δ= 0 be optimal, we thus require

γ +Qm+p ≥ 0�(9)

Moreover, given truthful reporting in the past (so m = 0), it must be optimal
to report truthfully in the present, and thus we can strengthen this to

γ +p ≥ 0�(10)

Under truthful revelation, the co-state variables evolve as

dqt =
[
ρqt − ∂H(Γ� z)

∂Γ

]
dt + γtσ dW 0

t(11)

= [ρqt − u(st� yt)]dt + γtσ dW ∗
t �

qT =U(sT � yT )�

dpt =
[
ρpt − ∂H(Γ� z)

∂z

]
dt +Qtσ dW 0

t(12)

= [ρpt − λγt + ub(st� yt)]dt +Qtσ dW ∗
t �

pT = −Ub(ST � yT )�

Here (11) and (12) carry out the differentiation, evaluate the result under
truthful revelation, and change the Brownian motion as in (6). Details of the
derivations are provided in Appendix A.1. Notice that pt and qt solve backward
stochastic differential equations, as they have specified terminal conditions but
unknown initial conditions.

Below I show that these co-state processes encode the necessary history
dependence that truthful revelation contracts require. In effect, the princi-
pal is able to tune the coefficients γt and Qt in these state variables. That is,
incentive-compatible contracts can be represented via specifications of st(y) =
s(t� yt� qt�pt), γt = γ(t� yt� qt�pt), and Qt = Q(t� yt� qt�pt) for some functions
s, γ, and Q. Notice as well that the co-state evolution equations do not depend
on Γt or zt and thus the entire system consists of (2) with Δt = mt = 0, (11),
and (12).
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To help interpret the co-state equations, consider first the co-state (11). As
can be easily verified, we can write its solution as

qt = E∗

[∫ T

t

e−ρ(τ−t)u(sτ� yτ)dτ + e−ρ(T−t)U(sT � yT )
∣∣Ft

]
�(13)

where E∗ is the expectation with respect to P∗. Thus q0 = V (y) and the agent’s
optimal utility process becomes a state variable for the contracting problem.
Using utility as a state variable is a well known idea in the literature following
Abreu, Pearce, and Stacchetti (1986) and Spear and Srivastrava (1987), and
has been widely used in contexts like ours following Green (1987) and Thomas
and Worrall (1990).

In environments without persistent private information, the promised utility
encapsulates the necessary history dependence. However, with persistent pri-
vate information, additional information is necessary. The agent’s decisions at
any date now may depend on both his previous history of reports as well as the
true history of his private state. Put differently, with persistent information,
a lie in the current period affects both the principal’s expectations of future
realizations of the hidden state and the agent’s expectations of his own future
payoffs. However, as I show below, when the agent’s utility function is concave
in the hidden state, local information suffices to capture the additional depen-
dence. The variable pt , which we call the promised marginal utility state, gives
the marginal value in utility terms of the hidden state variable mt evaluated at
mt = 0. Thus it captures the marginal cost of not lying.

In particular, suppose that (10) binds almost everywhere.11 Then (12) be-
comes

dpt = [(ρ+ λ)pt + ub(st� yt)]dt +Qtσ dW
y
t �

It is easy to verify that the solution of this equation is

pt = −E∗

[∫ T

t

e−(ρ+λ)(τ−t)ub(sτ� yτ)dτ + e−(ρ+λ)(T−t)Ub(sT � yT )
∣∣Ft

]
�(14)

Thus pt is the negative of the agent’s optimal marginal utility (of the private
state bt) under the contract. As noted in the Introduction, similar state vari-
ables have been used in related contexts by Werning (2001), Abraham and
Pavoni (2008), Kapicka (2006), and Williams (2009).12 Here the persistence of
the endowment effectively acts as an additional discount, since larger λ means

11Here we make this assumption only to help interpret the variable pt , but it is not necessary
for our results. We discuss this condition in more detail in Section 5.3 below.

12Most of these references use either current or discounted future marginal utility of consump-
tion as the additional state variable. The marginal utility of the private state is not necessarily the
same as the marginal utility of consumption, as we show below.
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faster mean reversion which shortens the effective life of the private informa-
tion. In the limit as λ → ∞, we approximate an i.i.d. process and pt converges
to an i.i.d. random variable. Thus in the i.i.d. case, a contract only needs to
condition on the utility process, while persistent private information requires
the marginal utility process as well.

Notice that γt , the loading of the utility process on the Brownian motion,
is a key means to induce truthful revelation. When bt is the agent’s endow-
ment, a risk-neutral principal who directly observes bt will fully stabilize the
agent’s consumption, and thus set γt = 0. (This should be clear intuitively, but
will be shown explicitly below.) But when the agent has private information,
the principal induces truthful revelation by making the agent’s utility vary with
his report. In particular, (10) implies γt ≥ −pt ≥ 0, so that promised utility qt

increases with larger realizations of the private state. With persistent private in-
formation, the principal also chooses Qt , the loading of the promised marginal
utility state on the endowment shocks. Thus when considering lying, the agent
must balance the higher utility promise with the effects on his marginal utility
promise.

4. TRUTHFUL REVELATION CONTRACTS

I now characterize the class of contracts which are individually rational and
can induce the agent to truthfully report his private information. Instead of
considering a contract as a general history-dependent specification of s(y) as
above, I now characterize a contract as processes for {st� γt�Qt} conditional on
the states {yt� qt�pt}. In this section I provide conditions on these processes
that a truthful revelation contract must satisfy.

In standard dynamic contracting problems, like Thomas and Worrall (1990),
contracts must satisfy participation, promise-keeping, and incentive con-
straints. Similar conditions must hold in our setting. I have already discussed
the participation constraint, which must ensure that the agent’s utility under
the contract is greater than under autarky. This simply puts a lower bound on
the initial utility promise

q0 ≥ V a(y0)�(15)

where we use that y0 = b0. The promise-keeping constraints in our environ-
ment simply state that the contract is consistent with the evolution of the util-
ity and marginal utility state variables (11)–(12). The incentive constraint is
the instantaneous truth-telling condition (10) which ensures that if the agent
has not lied in the past, he will not do so in the current instant. However, to
be sure that a contract is fully incentive-compatible, we must consider whether
the agent may gain by lying now and in the future. Such “double deviations”
can be difficult to deal with in general (see Kocherlakota (2004) and Williams
(2009), for example), but I show that in our setting, they can be ruled out by
some further restrictions on Qt under the contract.
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I now provide the key theoretical results that characterize the class of truth-
ful revelation contracts. The theorem adapts my previous results from Williams
(2009), which in turn build on Schattler and Sung (1993) and Zhou (1996).
However, the setting here leads to a more direct proof, which is contained in
Appendix A.2. The idea of the proof is to use the representations of the agent’s
utility and marginal utility processes under the contract, along with the con-
cavity assumptions on the primitives, to bound the gain from deviating from
truth-telling.

THEOREM 4.1: Assume that the agent’s utility functions u and U are twice
differentiable, increasing, and concave in b, and that λ ≥ 0. Then we have the
following results:

(a) Any truthful revelation contract {st� γt�Qt} satisfies (i) the participation
constraint (15), (ii) the promise-keeping constraints (11)–(12), and (iii) the in-
centive constraint (10).

(b) Suppose λ 	= 0 and u is three times differentiable in b with ubbb ≥ 0. Then
any contract satisfying conditions (i)–(iii) and insuring that the conditions

Qt ≤ −ubb(st� yt)

2λ
(16)

and

Qt ≤ −E∗

[∫ T

t

e−ρ(τ−t)[ubb(sτ� yτ)+ 2λQτ]dτ
∣∣Ft

]
(17)

hold for all t is a truthful revelation contract.
(c) Suppose λ = 0 and u is three times differentiable in b with ubbb ≥ 0. Then

any contract satisfying conditions (i)–(iii) and insuring that the condition

Qt ≤ −E∗

[∫ T

t

e−ρ(τ−t)ubb(sτ� yτ)dτ
∣∣Ft

]
(18)

holds for all t is a truthful revelation contract.

Since u is concave in b, the right sides of the inequalities (16) and (18) are
positive, and (16) implies that the right side of (17) is positive as well. Thus
Qt ≤ 0 for all t is a stronger, but simpler, sufficient condition. In particular,
the incentive constraint (10) and Qt ≤ 0 together are sufficient to ensure that
the agent’s optimality condition (9) holds, since mt ≤ 0. However the sufficient
conditions (16)–(17) or (18) in the theorem are weaker in that they allow some
positive Qt settings. We show below that these conditions, but not the stronger
Qt ≤ 0 condition, are satisfied in our examples.

Intuitively, the sufficient conditions trade off level and timing changes in
the agent’s consumption profile under the contract. As discussed above, the
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contract links the volatility of the agent’s promised utility to his report, spread-
ing out continuation utility so as to insure truthful revelation. However, the
promised marginal utility state allows the contract to condition the spread of
continuation utilities, making the volatility of future continuation utility de-
pend on the current report. In particular, if an agent were to lie and set Δt < 0
for some increment δ > 0 of time, his promised future utility qt+δ would be
lowered as δγtΔt < 0. If the stronger sufficient condition Qt < 0 holds, then
the lie would also increase (i.e., make less negative) the promised marginal
utility state pt+δ as δQtΔt > 0. Since this state variable gives the negative of
marginal utility, this is associated with a reduction in expected marginal utility.
This roughly means that after a lie, an agent could expect lower lifetime con-
sumption overall (from the fall in q), but consumption would grow in the future
(from the reduction in future marginal utility). Moreover, from the incentive
constraint (10), we see that the current lie would lead to smaller utility disper-
sion in the future as γt+δ is now bounded by the smaller quantity −pt+δ. By
using the concavity of utility and the continuity of sample paths, we show that
contracts which appropriately balance these effects are incentive-compatible.

In some cases the sufficient conditions (16)–(18) may be overly stringent or
difficult to verify. To be sure that the contract does indeed ensure truthful rev-
elation, we then must re-solve the agent’s problem facing the given contract.
This is similar to the ex post incentive compatibility checks that Werning (2001)
and Abraham and Pavoni (2008) conducted. Re-solving the agent’s problem
typically would require numerical methods, as indeed would finding the con-
tract itself. In the examples below, we verify that the sufficient conditions do
hold, but we also illustrate how to analytically re-solve the agent’s problem.

5. OPTIMAL CONTRACTS ON AN INFINITE HORIZON

I now turn to the principal’s problem of optimal contract design over an
infinite horizon. Formally, I take limits as T → ∞ in the analysis above.
Thus we no longer have the terminal conditions for the co-states in (11)
and (12); instead we have the transversality conditions limT→∞ e−ρTqT = 0 and
limT→∞ e−ρTpT = 0. For the purposes of optimal contract design, we can ef-
fectively treat the backward equations that govern the dynamics of promised
utility and promised marginal utility as forward equations under the control
of the principal. Thus the principal’s contract choice is a standard stochastic
control problem.

5.1. Basic Layout

As is standard, I suppose that the principal’s objective function is the ex-
pected discounted value of the transfers

J =Ey

[∫ ∞

0
e−ρtst dt

]
�
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where he discounts at the same rate as the agent. The principal’s problem is
to choose a contract to minimize J subject to satisfying (i) the participation
constraint (15), (ii) the promise-keeping constraints (11)–(12), and (iii) the
incentive constraint (10). We focus on the relaxed problem and do not impose
the sufficient conditions from Theorem 4.1, but instead check ex post whether
they are satisfied (and if not, we directly check whether the contract is incentive
compatible). While the participation constraint bounds q0, p0 is effectively free
and so we treat it as a choice variable of the principal. Thus a contract consists
of {st� γt�Qt} and values for q0 and p0.

I focus on the dynamic programming approach to the principal’s problem.13

Abusing notation slightly, denote the principal’s value function J(y�q�p), and
let Jy(y�q�p)� � � � be its partial derivatives. Via standard arguments (see, e.g.,
Yong and Zhou (1999)), the value function satisfies the Hamilton–Jacobi–
Bellman (HJB) equation

ρJ = min
{s�γ≥−p�Q}

{
s + Jyμ(y)+ Jq[ρq− u(s� y)](19)

+ Jp[ρp+ γμ′(y)+ ub(s� y)]

+ σ2

2
[Jyy + Jqqγ

2 + JppQ
2 + 2(Jyqγ + JypQ+ JpqγQ)]

}
�

where we suppress the arguments of J and its derivatives. Given the solution
to (19), the initial value p0 is chosen to maximize J(y0� q0�p0).

5.2. Full Information

As a benchmark, we consider first the full-information case where the prin-
cipal observes all state variables. His problem in this case is to maximize J
subject only to the participation constraint. It is possible to include this as a
constraint at date zero, but to make the analysis more comparable with the
previous discussion, we include qt as a state variable. The principal’s costs de-
pend on yt and qt , which govern the amount of utility he must deliver to satisfy
the participation constraint, but there are no direct costs associated with the
marginal utility state pt .

Denoting the full-information value function J∗(y�q), we see that it solves
an HJB equation similar to (19):

ρJ∗ = min
{s�γ}

{
s + J∗

y μ(y)+ J∗
q[ρq− u(s� y)] + σ2

2
[J∗

yy + J∗
qqγ

2 + 2J∗
yqγ]

}
�

13Cvitanić, Wan, and Zhang (2009) used a stochastic maximum principle approach to charac-
terize contracts in a moral hazard setting. In an earlier draft, I used the maximum principle to
provide some partial characterizations of the dynamics of optimal contracts.
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The optimality conditions are

J∗
qus(s� y)= 1� γ = −J∗

yq/J
∗
qq�(20)

The first condition balances the instantaneous costs of payments with their
impact on lessening future transfers. Since γ governs both the volatility of the
utility promise q and its covariation with the report y , the second condition
balances these effects. Letting s(y�q) be the solution of the first optimality
condition, the HJB becomes

ρJ∗ = s(y�q)+ J∗
y μ(y)+ J∗

q

[
ρq− u(s(y�q)� y)

] + σ2

2

[
J∗
yy − (J∗

yq)
2

J∗
qq

]
�(21)

In general, the agent’s consumption varies with the state y . However, in the
hidden endowment case, we obtain the standard result that a risk-neutral prin-
cipal absorbs all the risk, completely stabilizing the agent’s consumption. In
particular, when u(s�b) = v(s + b), let c̄(q) = v−1(ρq) be the constant con-
sumption consistent with promised utility q. Then it is straightforward to verify
that the solution to (21) is given by

J∗(y�q) = c̄(q)

ρ
+ j(y)�(22)

where j(y) solves the second-order ordinary differential equation (ODE)

ρj(y)= −y + j′(y)μ(y)+ 1
2
j′′(y)σ2�(23)

Below we provide an explicit solution of this ODE for a particular parameter-
ization. Thus the optimal full-information contract indeed calls for complete
stabilization, setting st = c̄(qt) − yt and γt = 0. Together these imply that con-
sumption and promised utility are constant under the contract ct = c̄(q0) and
qt = q0 for all t.

5.3. Hidden Information

We now return to the hidden information problem, where it is difficult to
characterize the general case in much detail. We now assume that the incen-
tive constraint (10) binds, so that γ = −p. We relax this condition in an exam-
ple below and verify that it holds. However, we also conjecture that it holds
more generally. Under full information, the principal need not worry about in-
centives and can provide constant promised utility. With hidden information,
utility must vary to provide incentives. But because the agent is risk averse, the
principal will typically find it optimal to induce as little volatility in the agent’s
utility as possible so as to induce truthful revelation, and thus he will set γ at
the lowest feasible level.
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The γ choice is constrained, while the other optimality conditions from (19)
are

Jqus(s� y)− Jpubs(s� y)= 1�(24)

JppQ+ Jyp −pJqp = 0�(25)

Relative to the full-information case, the first-order condition for the pay-
ment (24) has an additional term coming from the effect of consumption on
the marginal utility state pt . That is, payments affect both the promised utility
and promised marginal utility, and hence impact the agent’s future valuations.
The condition (25) for Qt balances the effects of the variability of pt with the
covariations of pt with yt and qt .

We can use these optimality conditions and the HJB equation to solve for
a candidate optimal contract. Then we can check whether the sufficient con-
ditions from Theorem 4.1 hold. If not, we would directly solve the agent’s re-
porting problem given the contract to check incentive compatibility. We follow
this procedure below.

6. A CLASS OF HIDDEN ENDOWMENT EXAMPLES

In this section, we study a class of examples which allows for explicit solu-
tions. We suppose b is the agent’s endowment and that the agent has exponen-
tial utility

u(s�b) = −exp(−θ(s + b))�

As is well known, exponential utility with linear evolution often leads to explicit
solutions, and this is once again the case here. We fully solve for the optimal
contract and verify that it is indeed incentive compatible. Then we discuss how
persistence affects the contract and compare our results to those in the liter-
ature. Some of the intermediate calculations for this section are provided in
Appendix A.3.

6.1. Full Information

As a benchmark, we first consider the full-information case from Section 5.2.
Inverting the agent’s utility function, consumption under the contract is

c̄(q) = − log(−ρq)

θ
�

It is easy to verify that the solution of the ODE (23) for the principal’s cost is

j(y)= − μ0

ρ(λ+ ρ)
− y

λ+ ρ
�
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We then have that the full-information cost function is

J∗(y�q) = − log(−ρq)

ρθ
− μ0

ρ(λ+ ρ)
− y

λ+ ρ
�

Thus the principal’s full-information cost is linear and decreasing in the endow-
ment y as well as being linear in the consumption equivalent of the promised
utility q, which here implies that the cost is logarithmic in q.

6.2. Persistent Endowment

We now suppose that the agent’s endowment is private information and is
persistent. We show that the contract is similar to the full-information case,
but now it may depend on the promised marginal utility pt . However, when
the endowment is permanent, the ratio pt/qt is necessarily constant. This fol-
lows from the proportionality of utility and marginal utility with exponential
preferences, since (13) and (14) with λ = 0 imply pt = θqt . Thus we can dis-
pense with pt as a separate state variable. When λ > 0, the pt/qt ratio may
vary over time. However, we show that under the optimal contract, it is indeed
constant at a level which depends on λ. This is clearly a very special case of our
general results, as typically both pt and qt would be necessary state variables.
However, this special case facilitates explicit calculations.

We also show that the degree of risk sharing increases as the endowment
becomes less persistent. There is no risk sharing at all in the permanent case,
while in the i.i.d. limit, the contract allocation converges to full information
with complete consumption stabilization. Thus the distortions inherent in the
discrete-time i.i.d. environments of Thomas and Worrall (1990) and others
vanish in continuous time, as we discuss below.

6.2.1. The Optimal Contract With an Arbitrary Initial Condition

We first consider contracts with an arbitrary initial condition for the marginal
utility state p0. Later, we consider the choice of the initial value. Thus first
consider the principal’s problem given the states (y�q�p). We show in Ap-
pendix A.3.1 that the principal’s cost function can be written

J(y�q�p)= j0 + j1y − j2 log(−q)+ h(p/q)(26)

for some constants (j0� j1� j2) and some function h which solves a second-order
ODE given in the Appendix. Letting k = p/q, in the permanent endowment
case, kt = θ for all t, but when λ > 0, then kt becomes a state variable. We also
show in Appendix A.3.1 that the agent’s consumption under the contract c and
the diffusion coefficient Q on marginal utility can be written

c(q�k)= − log(−qĉ(k))

θ
� Q(q�k) = −qQ̂(k)
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for functions ĉ(k) and Q̂(k) which we provide there. The consumption and
cost functions are similar to the full-information case, but they depend on the
ratio of the utility and marginal utility promises k, which in general will vary
over time.

Using the previous results, the dynamics of the co-states can be written

dqt = [ρ− ĉ(kt)]qt dt − σpt dWt�(27)

dpt = [(ρ+ λ)pt − θĉ(kt)qt]dt − σqtQ̂(kt)dWt�

Here we presume truthful revelation, so the principal effectively observes the
true shocks W y

t =Wt . Applying Ito’s lemma gives the dynamics of the ratio:

dkt = [
ĉ(kt)(kt − θ)+ λkt + σ2kt(k

2
t − Q̂(kt))

]
dt(28)

+ σ(k2
t − Q̂(kt))dWt�

When λ = 0, this ratio is necessarily constant, but now it may evolve stochas-
tically. But we show next that if the ratio is initialized optimally, it remains
constant.

6.2.2. The Optimal Initial Condition

Recall that the marginal utility state pt is an endogenous, backward stochas-
tic differential equation. Thus its initial condition is not specified, but is instead
free to be chosen by the principal. While the optimal choice of k0 for λ > 0 is
difficult to establish analytically, in Appendix A.3.1 we verify numerically that
the optimal initial condition is k∗

0 = ρθ

ρ+λ
. This result is intuitive, as it is propor-

tional to the ratio of the discount rates in the utility and marginal utility state
variables. Note that although the choice of initial condition required numeri-
cal methods, conditional on it, the rest of our results are analytic. Given k∗

0, the
expressions in the Appendix then imply ĉ(k∗

0) = ρ and Q̂(k∗
0)= (k∗

0)
2, which in

turn imply

c(q�k∗
0)= − log(−ρq)

θ
= c̄(q)� Q(q�k∗

0)= −q(k∗
0)

2�

Moreover, from (28) we see that the promised utility and marginal utility states
remain proportional throughout the contract: kt = k∗

0 for all t.
The principal’s cost function is nearly the same as the full-information case,

with the only change being an additional additive constant term. In particular,
using the expressions in Appendix A.3.1 and letting p∗

0 = k∗
0q0, we have

J(y0� q0�p
∗
0)= J∗(y0� q0)+ σ2θ

2(ρ+ λ)2
�
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The additional cost of not observing the endowment is increasing in the local
variance of the endowment, which is a measure of the “size” of the private in-
formation. The cost is also increasing in the agent’s risk aversion parameter θ,
reflecting the additional expected payments which must be made to compen-
sate for risk, and decreasing in rate of time preference, reflecting the effective
horizon of the payments. Finally, the additional cost declines as λ increases
and the endowment becomes less persistent.

The optimal contract has striking implications for the dynamics of consump-
tion and utility. In particular, consumption is the same function of promised
utility whether the agent’s endowment is private information or not. However,
in the full-information case, promised utility is constant, while with private in-
formation it varies. In fact, using ĉ = ρ and pt = k∗

0qt in (27), we have

dqt = − σρθ

ρ+ λ
qt dWt�(29)

and thus promised utility follows a martingale. This equation can be solved
explicitly, leading to an explicit solution for consumption as well:

qt = q0 exp
(

− σ2ρ2θ2

2(ρ+ λ)2
t − σρθ

ρ+ λ
Wt

)
�

ct = c̄(q0)+ σ2θρ2

2(ρ+ λ)2
t + σρ

ρ+ λ
Wt�

Therefore, consumption follows a Brownian motion with drift, growing over
time so as to provide risk compensation for the increasing variability. As con-
sumption tends to grow over time, promised utility tends toward its upper
bound of zero.

The volatility of consumption provides one measure of the degree of risk
sharing that the contract provides. When λ= 0, the endowment and consump-
tion are both Brownian motions with drift, having the same local variance σ2.
Thus when the endowment is permanent, the contract provides no risk shar-
ing. It only alters the time path of consumption, providing more consumption
up front in exchange for a lower average growth rate. However, as informa-
tion becomes less persistent, the local variance of consumption falls and the
amount of risk sharing increases. In particular, in the limit approaching an
i.i.d. endowment (with σ = σ̄

√
λ and λ → ∞), the optimal contract with pri-

vate information converges to the efficient, full-information allocation.
The results are illustrated in Figure 1, which plots the distributions of con-

sumption under autarky and under the contract with two different values of λ.
In each case we show the mean of the distribution along with 1 and 2 standard
deviation bands. We scale the drift and diffusion parameters with λ to main-



PERSISTENT PRIVATE INFORMATION 1255

FIGURE 1.—Distributions of consumption under the optimal contract and under autarky for
two different values of λ.

tain a constant unconditional mean and variance.14 The top two panels plot
the distributions of the endowment, and hence consumption under autarky.
The endowment is stationary, so after being initialized at a common point (the
unconditional mean), the variance of the distribution grows until it reaches the
stationary distribution. Clearly, with less persistence (larger λ), this conver-
gence is much faster. The bottom two panels plot the consumption distribution
under the optimal contract. Here we see that early on the distribution of con-
sumption under the contract is tighter than under autarky, reflecting the risk
sharing properties of the contract. Clearly, with less persistence, there is more
risk sharing, so the consumption distribution is even more compressed. How-
ever, unlike the autarky case, consumption is nonstationary under the contract.
Consumption has an upward trend (which is difficult to see in the figure) and
its distribution fans out over time.

14In particular, we choose θ = 1, ρ = 0�1, σ̄ = 0�25, and μ̄ = 1.
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6.3. Verifying Incentive Compatibility

In Appendix A.3.2, we verify that the sufficient conditions (16) and (17) from
Theorem 4.1 hold. Thus we know the contract derived above is indeed the op-
timal incentive-compatible contract. However, directly verifying that the con-
tract is incentive compatible helps to understand how the contract provides
incentives for revelation. When the λ = 0, this is straightforward. If the agent
were to deviate from truth-telling and report a lower endowment, then he
would receive a permanently lower promise of future utility and hence future
consumption. This would exactly balance the increased consumption he would
gain due to his lower transfer payment to the principal.

Since we allow the possibility of lying, we distinguish between the true en-
dowment shock Wt and the principal’s prediction of it W y

t . Under the optimal
contract and an arbitrary reporting strategy, we have

ct = s(qt� yt)+ yt −mt

= − log(−ρqt)

θ
− yt + yt −mt

= c̄(q0)+ σ2θ

2
t + σW

y
t −mt

= c̄(q0)+ σ2θ

2
t +

∫ t

0
[dyτ −μ0 dτ] −mt

= c̄(q0)+ σ2θ

2
t +

∫ t

0
[dbτ + (Δτ −μ0)dτ] −mt

= c̄(q0)+ σ2θ

2
t + σWt�

where we have used bt = b0 + μ0t + σWt and the definition of mt . Thus the
agent’s consumption is independent of his reporting process yt , depending only
on his initial utility promise, a deterministic transfer, and the underlying shocks
to his endowment. Put differently, the contract ensures that the agent receives
the same consumption whatever he reports. Thus the contract is consistent with
truthful revelation, although reporting truthfully is by no means the unique
best response of the agent.

When λ > 0, directly verifying incentive compatibility requires fully solving
the agent’s problem facing the contract. These more complicated calculations
are carried out in Appendix A.3.2.

7. RELATIONSHIP WITH PREVIOUS LITERATURE

7.1. General Discussion

My results in the previous section are in sharp contrast to the discrete-time
models with i.i.d. private information. As discussed above, Thomas and Wor-
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rall (1990) showed that the optimal contract leads to immiseration, with the
agent’s promised utility tending toward minus infinity. But under the optimal
contract here, consumption grows on average over time. In both our setting
and theirs, the distribution of promised utility fans out over time so as to pro-
vide incentives. However, in our setting, the Brownian motion shocks driving
the endowment process have a distribution which naturally fans out over time.
Therefore, by linking the agent’s promised utility (and hence consumption) to
the reported endowment shocks, the principal is able to achieve the fanning
out of the utility distribution which is required to provide incentives, yet still
have consumption increase over time. The speed at which the utility distribu-
tion fans out depends on the persistence of the information. As the endowment
becomes less persistent, the effective life of the private information is shorter,
and smaller increases in the utility dispersion are required to ensure truthful
reporting.

To provide a bit more detail, note that we can define the cumulative endow-
ment Yt = ∫ t

0 yu du and the cumulative transfers St = ∫ t

0 su du as ordinary (not
stochastic) integrals. By requiring Yt and St to thus be absolutely continuous,
we are able to define utility over their flows. If Yt were of unbounded variation,
say by specifying Yt =

∫ t

0 yu du+∫ t

0 σ
Y
u dWu, then it would be unclear how to de-

fine utility over the flow, except in the risk-neutral case studied by DeMarzo
and Sannikov (2006). While this technical difference may seem relatively mi-
nor, it implies that as we approach the i.i.d. limit, the information frictions
vanish. In particular, our limit result is driven by the fact that the diffusion
term in (29) vanishes as λ → ∞, since σ increases with

√
λ. If σ increased

with λ, then there would be nonzero frictions in the limit, but the variance of
the endowment process would explode.

The efficient limit result is also implicit in Thomas and Worrall (1990),
a point we make explicit in the next section. In the course of establishing that
as the discount factor tends to unity, the contract converges to the first best
(their Proposition 4), they showed that the deviations from efficiency are tied
to the cost of inducing the efficient actions for one period. Rather than let-
ting discount rates decline as in their limit, our results effectively let the period
length shrink to approach continuous-time. But the consequence is the same:
the inefficiency vanishes. Thus as periods become shorter, deviations from ef-
ficiency are sustainable if either the cumulative endowment has unbounded
variation, which causes conceptual problems, or the endowment is persistent,
which is quite natural. We illustrate the efficiency of the continuous-time limit
in Thomas and Worrall (1990) in the next section.

As a final comparison, note that although the inverse Euler equation does
not hold in our environment, it does hold in the continuous-time moral haz-
ard model in Williams (2009). In the moral hazard (hidden effort) setting, the
contract specifies a consumption payment to the agent conditional on realized
output. However, effort is costly to the agent and thus the incentive constraints
reflect the instantaneous effect of the information friction. By contrast, in the
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hidden information model, lying has no instantaneous effect on the agent: it
only affects his future expected transfers. Thus the incentive constraints are
fully forward-looking, implying constraints on the evolution of promised utility.
Thus whether the inverse Euler equation holds does not depend on whether
time is continuous or discrete, but it is sensitive to the source of the informa-
tion friction.

7.2. Efficiency in a Limit of Thomas and Worall

In this section, we demonstrate that as the period length shrinks to zero in
the discrete-time model of Thomas and Worrall (1990), the contract converges
to the efficient allocation. As discussed previously, such a limit is implicit in
their paper; here we make the argument explicit for the case of exponential
preferences and binary endowment realizations.

In particular, suppose now that time is discrete with interval ε between peri-
ods. The agent’s endowment realization bt each period is i.i.d. and can take on
values b1 with probability 0�5 and b2 > b1 with probability 0�5. The restriction
to equal probabilities of high and low realizations helps preserve the link with
our continuous-time model, where, over short intervals, upward and downward
movements are equally likely. The agent has exponential preferences with pa-
rameter θ as above and discount factor α = exp(−ρε). Each period, upon re-
ceiving a report of bi, the contract specifies a transfer si and a utility promise
(now relative to autarky) of qi for the next period. To simplify some notation,
let ū = 0�5[u(b1)+ u(b2)], and define the value of autarky as A = ūε/(1 − α).
In their Proposition 6, Thomas and Worrall (1990) showed that in this setting,
the optimal contract can be represented as a set of numbers 0 ≤ a2 ≤ a1 and
d1 ≥ d2 ≥ 0 which satisfy

exp(−θsi)= −ai(q+A)�

qi = diq+ (di − 1)A�

0�5
a1

+ 0�5
a2

= −A�

0�5
d1

+ 0�5
d2

= 1�

along with the (binding) downward incentive constraint

u(s2 + b2)ε+ αq2 = u(s1 + b2)ε+ αq1

and the promise-keeping constraint

0�5[u(s1 + b1)ε− u(b1)ε+ αq1]
+ 0�5[u(s2 + b2)ε− u(b2)ε+ αq2] = q�
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To solve for the optimal contract, we first substitute for si and qi in terms
of ai and di, then use the normalizations of ai and di to eliminate a2 and d2.
Finally, we combine the incentive and promise-keeping constraints to obtain a
single equation in a1:

−exp(−θb2)

(
0�5

ū

1 − α
+ 0�5

a1ε

+a1ε

)
+ 0�5α

1 − 0�5α
1 + ūa1ε

−(1+ ūa1ε)= 0�(30)

The solution of equation (30), which is a cubic equation in a1, determines the
optimal contract. After some simplification, it can be written

0�5
(1 − α)2

ε2
+ [

exp(−θb2)(1 − 0�5α)+ (1 + 0�5(2 − α))ū
](1 − α)

ε
a1

+ ū[exp(−θb2)(2 − 1�5α)+ ū(2�5 − 1�5α)]a2
1

+ ū2[exp(−θb2)+ ū]εa3
1 = 0�

We now find the limiting solution as the period length shrinks. We use the
facts that limε→0

(1−α)

ε
= ρ and limε→0 α = 1, and note that the cubic term is

of order ε, so it vanishes in the limit. Therefore, the limit contract solves the
quadratic equation

0�5ρ2 + [0�5 exp(−θb2)+ 1�5ū]ρa1 + [1�5 exp(−θb2)+ ū]a2
1 = 0�

The cost-minimizing root of this equation is then

a1 = ρexp(θb1)�

Then note that utility in state 1 under the contract is

u(s1 + b1) = −exp(−θb1)exp(θs1)

= exp(−θb1)a1(q+A) = ρ(q+A)�

with the same result for state 2. So consumption and utility are com-
pletely smoothed under the contract, and promised utility remains constant
(d1 = d2 = 1). Thus the continuous-time limit of the discrete-time i.i.d. model
of Thomas and Worrall (1990) agrees with the i.i.d. limit of our continuous-
time persistent information model above, with both implying efficiency in the
limit.

8. A PRIVATE TASTE SHOCK EXAMPLE

We now turn to an example where the agent has private information about
a preference shock which affects his marginal utility of consumption. Similar



1260 NOAH WILLIAMS

discrete-time models have been studied by Atkeson and Lucas (1992) with i.i.d.
shocks, and Kapicka (2006) with persistent private information. We now sup-
pose that b is the logarithm of a private taste shock and that the agent has
power utility over consumption,

u(s�b) = exp(−b)
s1−θ

1 − θ
�

where the coefficient of relative risk aversion is θ > 1.15 Clearly this specifica-
tion satisfies all of our assumptions, as ub > 0, ubb < 0, and ubbb > 0.

This example is similar to the previous one, with some differences that we
discuss below. For simplicity, we focus here on the permanent shock case, as
this allows for explicit solutions. Since ub = −u in this model, (11)–(12) imply
that p = q; thus we can dispense with p as a separate state variable. We also
assume that there is no trend in the taste shocks and E(exp(−b)) = 1, which
implies that μ0 = σ2

2 .

8.1. Full Information

As before, we begin with the full-information benchmark. Using the parame-
terization above, we show in Appendix A.3.3 that the optimality conditions (20)
and the HJB equation (21) can be solved explicitly:

J∗(y�q) =Aexp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�

s(y�q)=A1/θ exp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�

where

A≡
(
ρ+ σ2(θ− 1)

2θ2

)θ/(1−θ)

�

The flow utility is then proportional to promised utility q and independent of y:

u(s(y�q)� y) = exp(−y)

1 − θ

(
A1/θ exp

(
1

1 − θ
y

)
((1 − θ)q)1/(1−θ)

)1−θ

=
(
ρ+ σ2(θ− 1)

2θ2

)
q�

15We restrict attention to θ > 1 so that u < 0. Our results hold more generally.
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Instead of fully stabilizing consumption and utility, as the full-information
contract did in the hidden endowment example, here the optimal contract off-
sets the impact of the taste shocks on the current utility flow. Since the taste
shocks are stochastic, promised utility is then no longer constant. In particular,
from (20), we have

γ = −J∗
yq

J∗
qq

= −1
θ
q�(31)

Therefore, the evolution of promised utility (11) is

dqt = −σ2(θ− 1)
2θ2

qt dt − σ

θ
qt dWt�

Thus since qt < 0 and θ > 1, promised utility has a positive drift and thus
tends to increase over time. The taste shocks get translated into fluctuations
in promised utility, and the larger is the degree of risk aversion θ, the smaller
is the volatility of promised utility.

8.2. Private Information

When the agent’s taste shocks are private information, the principal must
provide incentives for truthful revelation. He does this by making promised
utility respond more to new observations than it does under full information.
In particular, the incentive constraint (10) here becomes γ = −p = −q, again
assuming the constraint binds. Since θ > 1, comparison with (31) shows that
an incentive-compatible contract clearly provides less insurance against taste
shocks than the first best contract.

As we show in Appendix A.3.3, the solution of the HJB equation (19) is very
similar to the full-information case, with a different leading constant:

J(y�q) = B exp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�(32)

s(y�q)= B1/θ exp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�

where

B ≡ (ρ)θ/(1−θ)�

Moreover, since θ > 1 and θ
1−θ

< 0, we see that B >A. Thus, as one would ex-
pect, the principal’s costs J(y�q) of delivering a given level of promised utility q
given a truthful report of y are higher under private information than with full
information. In addition, the agent obtains a larger transfer s under private in-
formation, as he must be compensated for bearing additional risk. Once again,
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the flow utility is proportional to promised utility q, but now with proportion-
ality factor ρ. This implies that under the optimal contract, promised utility is
a martingale,

dqt = −σqt dWt�(33)

This is just like the hidden endowment case (29) with λ = 0. Once again, with
permanent shocks there is a complete lack of risk sharing, as the full magnitude
of the shocks to the private state get translated into shocks to promised utility.

In fact, the contract can be implemented via a constant payment st = s̄, with s̄
chosen to deliver the initial promised utility q0. In turn, this insures that

qt = s̄1−θ

(1 − θ)ρ
exp(−yt)�

which satisfies (33) and when substituted into (32), gives indeed that s(y�q) =
s̄. Thus the agent’s consumption is independent of his reports yt and there is
no risk sharing. As above, we could verify the sufficient condition (18) that
ensures implementability, but the constancy of the payment st yields it directly.
As the payment is independent of the report, it is clearly (weakly) consistent
with truthful revelation.

Although direct comparisons are a little difficult given the differences in the
setups, my results differ substantially from Kapicka (2006). We both use similar
ideas, using a first-order approach to contracting to justify a recursive repre-
sentation of a contract with additional endogenous state variables. However,
our state variables differ. Kapicka (2006) took the agent’s promised marginal
utility of consumption as his additional state variable, while in my approach, the
marginal utility of the hidden state is the relevant state variable. With the multi-
plicative permanent taste shocks in this example, the promised marginal utility
of the hidden state is equal to the level of promised utility, and hence is super-
fluous. More generally, my state variable captures the lifespan of the private
information, as the promised marginal utility is discounted by the persistence
of the hidden state.

Our implications for contracts differ as well. In a numerical example similar
to the one in this section, Kapicka (2006) showed how the contract may signifi-
cantly distort the evolution of the agent’s marginal utility of consumption. This
leads to a sizeable “intertemporal wedge” that distorts the savings margin of
the type discussed by Golosov, Kocherlakota, and Tsyvinski (2003) among oth-
ers. But in our case, where we obtain explicit analytic solutions for the optimal
contract, consumption is deterministic. This implies that the marginal utility of
consumption is a constant multiple of promised utility and so is a martingale.
Thus we obtain a standard Euler equation with no intertemporal wedge. The
reasons for these differences are largely the same as in the hidden endowment
example above. Kapicka’s results are driven by the interaction between current
transfers and future promises, with the response of current consumption to a
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report playing a key role. But as we have seen, a lie cannot instantaneously
affect the agent’s consumption in continuous-time, so all incentive provision
is loaded on promised utility. Since the shocks are permanent, a current lie
does not affect the evolution of future reports. In this example, this means that
a lie effectively has a multiplicative, scale effect on the reported taste shock
process, and hence on utility. With the preferences in this example, future be-
havior is unaffected by a permanent multiplicative scale effect on utility. Thus
the only way the principal can ensure truthful revelation is to make the transfer
independent of the report. Such a contract does not lead to an intertemporal
wedge, but it clearly does not insure the agent against the taste shocks either.

Clearly some of my results are special to the permanent shock case, as with
persistent but not permanent shocks a current lie would influence future re-
ports. Kapicka (2006) considered intermediate cases of persistent but not per-
manent shocks, and showed numerically how persistence affects the results.
While we were able to do so analytically in the hidden endowment example
above, such results in this setting would require numerical methods.

9. CONCLUSION

In this paper I have developed some relatively general methods to study
contracting problems with persistent private information. I have shown how
the methods can lead to explicit solutions in examples. By casting the model
in continuous-time, I was able to use powerful tools from stochastic con-
trol. These allowed me to deduce that an optimal contract must condition
on two additional endogenous state variables, the agent’s promised utility and
promised marginal utility under the contract. While the use of promised utility
as a state variable is now widely applied, the marginal utility state variable is
more novel, although it does have some precedents in the literature.

My main results use the representation of the contract derived from analyz-
ing the agent’s necessary conditions for optimality. The key theoretical results
in the paper provide some sufficient conditions which guarantee that the con-
tract does indeed provide incentives for truthful revelation. In my examples,
I show that these conditions are verified, but in other settings, they may be
more difficult to establish. In such cases, my main results could still be used,
although one may then have to verify directly incentive compatibility. Apart
from special cases like my examples, such solutions would require numerical
methods. This is not surprising, as typical dynamic decision problems, not to
mention the more complex contracting problems we consider here, require
numerical solution methods. In any case, there is an array of well developed
numerical methods for solving partial differential equations like those which
result from our analysis.

In addition to laying out a framework, I have established some substantive
results on the nature of continuous-time contracts with persistent private infor-
mation. The examples highlight the close link between the persistence of the
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private information and the size of efficiency losses this information causes.
In particular, when shocks are permanent, distortions are the largest and risk
sharing may break down, while in the i.i.d. limit, we obtain efficiency. Although
this efficient limit differs from the discrete-time i.i.d. models in the literature,
it is inherent in those models as period length shrinks. Correspondingly, I have
shown that the “inverse Euler equation” of Rogerson (1985) and Golosov,
Kocherlakota, and Tsyvinski (2003) need not hold, and the related immisera-
tion results of Thomas and Worrall (1990) may fail. Both of these are sensitive
to the details of the contracting problem, depending on how deviations from
the contracted behavior affect utility and the state evolution.

APPENDIX

A.1. Derivation of the Co-State Evolution

Given the change of variables, the evolution of the co-states follows from
the maximum principle in Bismut (1973, 1978). The maximum principle also
requires some smoothness and regularity conditions, and a linear growth con-
dition on μ:

|μ(y)| ≤ K(1 + |y|) for some K�

All of these conditions hold under the affine specification that we focus on.
The text spells out the general co-state evolution in the lines preceding (11)–

(12). Carrying out the differentiation, we have (suppressing arguments of func-
tions)

∂H(Γ� z)

∂Γ
= u+ γ(μ+Δ)+pΔ+ ub

z

Γ
+ (Γ γ +Qz)μ′ z

Γ 2
�

∂H(Γ� z)

∂z
= −ub +Q(μ+Δ)−

(
γ +Q

z

Γ

)
μ′�

Thus under truthful revelation Γ = 1 and z = Δ= 0, we have

∂H(Γ� z)

∂Γ
= u+ γμ�

∂H(Γ� z)

∂z
= −ub +Qμ− γμ′�

Substituting the above evolution and using the change of measure (6) gives

dqt = [ρqt − u(st� yt)− γtμ(yt)]dt + γtσ dW 0
t

= [ρqt − u(st� yt)]dt + γtσ dW ∗
t �

dpt = [ρpt + ub(st� yt)−Qμ(yt)+ γtμ
′(yt)]dt +Qtσ dW 0

t

= [ρpt + ub(st� yt)+ γtμ
′(yt)]dt +Qtσ dW ∗

t �
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Then using μ′ = −λ, we have (11)–(12) in the text.

A.2. Proof of Theorem 4.1

The necessity of the conditions is obvious, as they were derived from the
agent’s necessary optimality conditions. For the converse, we first use the rep-
resentations of the agent’s utility and marginal utility under the contract. Then
we evaluate the potential gain from deviating from truth-telling, which involves
calculating expected utility under an alternative reporting strategy. Using the
concavity of u and U , we bound the utility difference by a linear approxima-
tion. We then use the incentive constraint to further bound the utility gain. The
last steps of the proof hold fixed the alternative report and show that even if
the agent had lied in the past, under the stated sufficient conditions, his utility
gain from lying in the future is negative.

Although it is natural for discussion and computation to work with the dis-
counted utility and marginal utility processes {qt�pt} defined in (11)–(12),
it is easier here to work with the undiscounted processes q̃t = e−ρtqt and
p̃t = e−ρtpt . Then making this substitution into (11) and integrating gives

e−ρTU(ST � yT )= q̃T = q0 −
∫ T

0
e−ρtu(st� yt) dt +

∫ T

0
e−ρtγtσ dW ∗

t �(A.1)

Further, using (12) and (3) along with the substitution for p̃t gives

p̃TmT =
∫ T

0
e−ρt[ptΔt − λmtγt +mtub(st� yt)]dt(A.2)

+
∫ T

0
e−ρtQtmtσ dW ∗

t �

For an arbitrary reporting policy Δ that results in ŷ = y −m, from (6) we have

σ dW ∗
t = σ dW Δ

t + [μ(yt −mt)+Δt −μ(yt)]dt�(A.3)

Now for this arbitrary reporting policy, we wish to compute the gain of devi-
ating from the truthful reporting strategy y (which gives promised utility q0),

V (ŷ)− q0 = EΔ

[∫ T

0
e−ρt[u(st� yt −mt)− u(st� yt)]dt(A.4)

+
∫ T

0
e−ρtγtσ dW ∗

t

]

+EΔ

[
e−ρT [U(ST � yT −mT)−U(ST � yT )]

]
�
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where we have used (A.1). Now by the concavity of U , we have

EΔ

[
e−ρT [U(ST � yT −mT)−U(ST � yT )]

]
(A.5)

≤ −EΔ[e−ρTUb(ST � yT )mT ]
=EΔ[p̃TmT ]�

Hence, combining (A.5) and (A.2) with (A.4), we get

V (ŷ)− q0(A.6)

≤EΔ

[∫ T

0
e−ρt[u(st� yt −mt)− u(st� yt)+mtub(st� yt)]dt

]

+EΔ

[∫ T

0
e−ρt[ptΔt − λmtγt]dt

+
∫ T

0
e−ρtσ[γt +Qtmt]dW ∗

t

]

=EΔ

[∫ T

0
e−ρt[u(st� yt −mt)− u(st� yt)+mtub(st� yt)]dt

]

+EΔ

[∫ T

0
e−ρt

[
ptΔt − λmtγt

+ (γt +Qtmt)(μ(yt −mt)+Δt −μ(yt))
]
dt

]
�

Here the equality uses the change of variables from (A.3) and the fact that the
stochastic integral with respect to W Δ has expectation zero with respect to PΔ.

Next we use the incentive constraint (10) to eliminate the ptΔt and γtΔt

terms from (A.6), as their sum is bounded by zero. In addition, the functional
form for μ gives

γt(μ(yt −mt)−μ(yt)− λmt)= 0 and

Qtmt(μ(yt −mt)−μ(yt))= λQtm
2
t �

Using these results and regrouping terms in (A.6), we have

V (ŷ)− q0 ≤ EΔ

[∫ T

0
e−ρt[u(st� yt −mt)− u(st� yt)(A.7)

+mtub(st� yt)+ λQtm
2
t +QtmtΔt]dt

]
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= EΔ

[∫ T

0
e−ρt[u(st� ŷt)− u(st� ŷt +mt)

+mtub(st� ŷt +mt)]dt
]

+EΔ

[∫ T

0
e−ρt(λQtm

2
t +QtmtΔt)dt

]
�

where the equality follows from the definition of ŷ . By the concavity of u, we
know that the sum of the first three terms in (A.7) is negative, but to bound the
entire expression, the terms in mt on the last line cause some additional compli-
cations. However, when Qt ≤ 0, then we have both Qtm

2
t ≤ 0 and QtmtΔt ≤ 0.

Thus the utility gain from lying is bounded by zero and the contract ensures
truthful revelation.

We now develop the weaker sufficient conditions stated in the theorem
which allow Qt > 0. Since the expectation in (A.7) is calculated with re-
spect to PΔ, we can treat ŷ as fixed and vary m. To make clear that we
are fixing the measure over ŷ (but now varying Δ), we denote Pŷ = PΔ for
the particular Δ resulting in ŷ . In other words, we have changed the mea-
sure in calculating utility under the reporting strategy ŷ , and we now fix
that measure but vary m. Thus we are implicitly varying the truth y , but
we have eliminated the dependence of the problem on y . That is, we now
solve

sup
{Δt }

Eŷ

[∫ T

0
e−ρt[u(st� ŷt)− u(st� ŷt +mt)

+mtub(st� ŷt +mt)+ λQtm
2
t +QtmtΔt]dt

]

subject to (3) and m0 = 0. By (A.7), we know that this maximized value gives
an upper bound on V (ŷ)− q0.

The Hamiltonian for this relatively standard stochastic control problem, with
co-state ξ associated with m, is

H∗(m�Δ) = u(s� ŷ)− u(s� ŷ +m)+mub(s� ŷ +m)(A.8)

+ λQm2 +QmΔ+ ξΔ�

Thus the optimality condition for truth-telling (Δt = 0) is

Qtmt + ξt ≥ 0�(A.9)

Unlike the incentive constraint (10), we want to be sure that (A.9) holds for
all mt . That is, we provide conditions to ensure that even if the agent had lied
in the past, he will not want to do so in the future.
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From Haussmann (1986), we know that (A.9) is sufficient for optimality
when the maximized Hamiltonian H∗(m�0) is concave in m. Note that we have

H∗
mm(m�0) = ubb(s� ŷ +m)+mubbb(s� ŷ +m)+ 2λQ

= ubb(s� y)+mubbb(s� y)+ 2λQ�

Now using the assumption ubbb ≥ 0, we know mubbb ≤ 0. Thus we have

H∗
mm(m�0)≤ ubb(s� y)+ 2λQ�

Then the required condition (16) in part (b) of the theorem guarantees that
H∗(m�0) is concave. When λ = 0, H∗

mm(m�0) is bounded above by ubb(s� y).
So for part (c), the concavity of u assures that H∗(m�0) is concave without any
further restrictions.

We find the evolution of the co-state ξ by differentiating the Hamiltonian:

dξt = [ρξt −H∗
m(m�0)]dt +ηt dW

ŷ
t

= [ρξt −mt(ubb(st� ŷt +mt)+ 2λQt)]dt +ηt dW
ŷ
t �

ξT = 0�

As in (13) and (14), the solution of this can be written

ξt = Eŷ

[∫ T

t

e−ρ(τ−t)ms(ubb(sτ� ŷτ +mτ)+ 2λQτ)dτ
∣∣Ft

]
�

But the optimality condition (A.9) ensures that Δτ = 0 and thus mτ = mt for
τ ≥ t. So then we have

ξt = mtEŷ

[∫ T

t

e−ρ(τ−t)(ubb(sτ� ŷτ +mt)+ 2λQτ)dτ
∣∣Ft

]
�

Substituting this into (A.9) gives

Qtmt +mtEŷ

[∫ T

t

e−ρ(τ−t)(ubb(sτ� ŷτ +mt)+ 2λQτ)dτ
∣∣Ft

]
≥ 0�

When mt = 0, this condition clearly holds, which is to say that if the agent never
lied, he will not find it optimal to do so. But when mt < 0, this implies

Qt ≤ −Eŷ

[∫ T

t

e−ρ(τ−t)(ubb(sτ� ŷτ +mt)+ 2λQτ)dτ
∣∣Ft

]
�(A.10)
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But since ubbb ≥ 0 and mt < 0, we know −ubb(sτ� ŷτ + mt) ≥ −ubb(sτ� ŷτ).
Therefore,

Qt ≤ −Eŷ

[∫ T

t

e−ρ(τ−t)(ubb(sτ� ŷτ)+ 2λQτ)dτ
∣∣Ft

]

is sufficient to guarantee that (A.10) holds. Since ŷ was arbitrary, this is the
same as (17) in part (b) of the theorem. Clearly, setting λ = 0 gives (18) in
part (c).

Thus we have shown that Δt = mt = 0 for all t is the solution of the control
problem above, under the conditions (16) and (17), or (18) when λ = 0. Clearly
with Δt = mt = 0, the maximized objective in (A.7) is zero, so V (ŷ) − q0 ≤ 0.
Thus the utility gain from lying is bounded by zero, and the contract ensures
truthful revelation.

A.3. Calculations for the Examples

A.3.1. Calculations for the Hidden Endowment Examples

We first verify the guess (26) of the form of the value function. From the
optimality conditions (24)–(25) and the form of the guess, we get

s = logθ
θ

+ log(Jq + θJp)

θ
− y

= logθ
θ

+ log(j2 + h′(k)(k− θ))− log(−q)

θ
− y�

Q = pJqp

Jpp
= −qk

(
h′(k)
h′′(k)

+ k

)
≡ −qQ̂(k)�

Then substituting these into the HJB equation (19), we get

j0 = logθ
ρθ

− μ0

ρ(ρ+ λ)
�

j1 = − 1
ρ+ λ

�

j2 = 1
ρθ

�

while h(k) satisfies the second-order ODE,

ρh(k) = 1
θ

log
(

1
ρθ

+ h′(k)(k− θ)

)
+ λh′(k)k(A.11)

+ σ2k2

2

(
1
ρθ

− h′(k)2

h′′(k)

)
�
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FIGURE A.1.—The function h(k) from the principal’s cost function with λ = 0�05. The dotted
lines show the optimal choice k∗

0 = ρθ/(ρ+ λ) and its corresponding value h(k∗
0).

Thus we have verified the guess. The agent’s consumption under the contract
can then be written:

c(q�k)= log(1/ρ+ θh′(k)(k− θ))

θ
− log(−q)

θ
≡ − log(−qĉ(k))

θ
�

While it does not seem feasible to solve for h(k) analytically, it is relatively
simple to solve the ODE (A.11) numerically.16 To find the optimal initial condi-
tion, we numerically solve for h and then pick the minimum. We have done this
for a range of different parameterizations, all yielding the same result k∗

0 = ρθ

ρ+λ
.

One numerical example is illustrated in Figure A.1, which plots h(k) when
λ= 0�05.17 The minimum clearly occurs at k∗

0, with the cost function increasing

16It is relatively simple, since the equation is a second-order ODE. However, the equation has
singularities which complicate matters somewhat. In practice, solving (A.11) as an implicit ODE
has worked best.

17The preference parameters are θ = 1 and ρ = 0�1. For the endowment, we scale the drift
and diffusion so that we approximate an i.i.d. N(1�0�152/2) process as λ → ∞. Thus we set
σ = 0�15

√
λ and μ0 = λ.
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rapidly for larger k and quite slowly for smaller k. Similar results were found
for a range of different parameterizations. Note as well that since h′(k∗

0) = 0,
we have ĉ(k∗

0) = ρ and Q̂(k∗
0) = (k∗

0)
2. For the principal’s cost, note that at k∗

0
we have

h(k∗
0)= 1

ρθ
log

(
1
ρθ

)
+ σ2θ

2(ρ+ λ)2
�

A.3.2. Calculations That Verify Incentive Compatibility

We now verify that the sufficient conditions (16) and (17) from Theorem 4.1
hold. Under the optimal contract, we have

ubb(st� yt)= v′′(yt + st)= −θ2 exp(−θc̄(qt))= θ2ρqt�

In addition, we have

Qt = −(k∗
0)

2qt = −θ2

(
ρ

ρ+ λ

)2

qt�

Thus since for all λ > 0,(
ρ

ρ+ λ

)2

<
ρ

2λ
�

we have that (16) holds with a strict inequality when λ > 0. (The condition is
irrelevant when λ = 0.) Moreover,

−Ey

[∫ ∞

t

e−ρ(τ−t)[u′′(yτ + sτ)+ 2λQτ]dτ
∣∣Ft

]

= −θ2

(
ρ− 2λρ2

(ρ+ λ)2

)∫ ∞

t

e−ρ(τ−t)Ey[qτ|Ft]dτ

= −θ2 ρ2 + λ2

(ρ+ λ)2
qt

≥ −θ2 ρ2

(ρ+ λ)2
qt =Qt�

where we use the fact that qt is a martingale and the expression for Qt above.
Thus (17) holds for all λ ≥ 0 (with strict inequality when λ > 0) under the
optimal contract.

To directly verify incentive compatibility when λ > 0, we now re-solve the
agent’s problem given a contract. In particular, the contract specifies a payment
s(yt� qt)= −log(−ρqt)/θ−yt , so that under an arbitrary reporting strategy, the
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agent’s consumption is ct = −log(−ρqt)/θ − mt . Clearly, the agent’s problem
depends on the endogenous state variable qt , which under his information set
evolves as

dqt = − σρθ

ρ+ λ
qt dW

y
t

= − ρθ

ρ+ λ
qt

(
σ dWt + [μ(yt −mt)+Δt −μ(yt)]dt

)

= − ρθ

ρ+ λ
qt(λmt +Δt)dt − σρθ

ρ+ λ
qt dWt�

where we have changed measure from the principal’s to the agent’s informa-
tion set.

The agent’s problem is then to maximize his utility over reporting strategies
subject to this law of motion for qt and the evolution (3) for mt . The problem
no longer depends directly on the level of the endowment yt . Letting V (q�m)
denote his value function, we see that it satisfies the HJB equation

ρV = max
Δ≤0

{
−exp

(−θ[c̄(q)−m]) − Vq

ρθ

ρ+ λ
q(λm+Δ)

+ VmΔ+ 1
2
Vqq

(
σρθ

ρ+ λ
q

)2}
�

Truth-telling is optimal if the following analogue of the incentive constraint (9)
holds:

−Vq

ρθ

ρ+ λ
q+ Vm ≥ 0�

It is easy to verify that the following function satisfies the HJB equation with
Δ= 0:

V (q�m) = q exp(θm)(ρ+ λ)

ρ+ λ+ θλm
�

Moreover, with this function, we have

−Vq

ρθ

ρ+ λ
q+ Vm = q exp(θm)θ2λ2m

(ρ+ λ+ θλm)2
≥ 0�

so that truth-telling is indeed optimal no matter what m is. In particular, we as-
sumed that m0 = 0 and since the agent never lies, then mt = 0 and V (qt�0)= qt

for all t. Thus the contract does indeed provide incentives for truthful revela-
tion.
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A.3.3. Calculations for the Taste Shock Example

First we solve the HJB equation (21) in the full-information case. Under our
parameterization, this can be written

ρJ∗ = e−(1/θ)y(J∗
q)

1/θ + J∗
y μ0 + J∗

qρq

− 1
1 − θ

e−(1/θ)y(J∗
q)

1/θ + σ2

2

[
J∗
yy − (J∗

yq)
2

J∗
qq

]
�

Then we guess that the solution is of the form

J∗ = Aexp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�

Carrying out the appropriate differentiation and substituting the expres-
sion into the HJB equation, we see that there is a common exp( 1

1−θ
y)((1 −

θ)q)1/(1−θ) factor on both sides of the equation. Collecting constants, we then
have that A solves

A

(
−ρ+ μ0

1 − θ
+ ρ

1 − θ
+ σ2

2

[
1

(1 − θ)2
− 1

θ(1 − θ)2

])
= θ

1 − θ
A1/θ�

Solving for A, simplifying, and using the value of μ0 yields the expression in
the text.

The solution of the hidden information case proceeds in much the same way,
only now with a different γ. In particular, the HJB equation (19) can now be
written

ρJ = e−(1/θ)yJ1/θ
q + Jyμ0 + Jqρq

− 1
1 − θ

e−(1/θ)yJ1/θ
q + σ2

2
[Jqqq2 + Jyy − 2Jyqq]�

Then we guess that the solution is again of the form

J = B exp
(

1
1 − θ

y

)
((1 − θ)q)1/(1−θ)�

Once again, there will be a common exp( 1
1−θ

y)((1 − θ)q)1/(1−θ) factor on both
sides of the equation. Collecting constants, we then have that B solves

B

(
−ρ+ μ0

1 − θ
+ ρ

1 − θ
+ σ2

2

[
θ

(1 − θ)2
+ 1

(1 − θ)2
− 2

(1 − θ)2

])

= θ

1 − θ
B1/θ�



1274 NOAH WILLIAMS

Solving for B, simplifying, and using the value of μ0 yields the expression in the
text.
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