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Abstract

We study a setting in which a principal wishes to procure a single unit of a good
in each period, t = 0, 1, 2, .... She may procure from the market at known cost d
or from an inside agent, who has a privately known cost of production. The agent’s
cost in each period is the realization of an iid draw from a continuous distribution
F (). The agent is risk-neutral but liquidity constrained and so must be advanced
his cost of production by the principal in every period.

We formulate the resulting dynamic mechanism design problem as a recursive
program in which the agent’s promised utility at any history, v, is the relevant
state variable that is naturally interpreted as his relational capital. In contrast
with the static problem, we show: first that even for the uniform distribution, the
monotonicity constraint on output will always hold with equality for a positive
measure of types until his relational capital is sufficiently high; and second that the
optimal allocation is not generally characterized by a cost cutoff, ie, may involve
probabilistic procurement.

We prove that the agent eventually builds up enough relational capital v* to
become a vested partner in the enterprise. Prior to attaining v* the agent is incentiv-
ised exclusively through adjustments to his relational capital, while after achieving
v* he receives rents paid in cash. Upon becoming a vested partner, the agent stays
a vested partner for ever. Furthermore, in every period, he is then given a right of
first refusal to produce the good for a cash payment of d, so there are no more
output distortions, and consequently, the monotonicity constraint no longer binds.
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1. Introduction

We study a setting in which a principal wishes to procure a single unit of a good
in each period, r = 0,1,2,.... She has two potential sources of supply: she may
procure from the market or from an inside agent. The cost of procuring from the
market is d € (0, 1] in each period. The agent may produce a unit of the good in
period ¢ at a privately known cost ¢; € [0, 1] which is drawn from a distribution F
and is iid over time.

The agent is risk-neutral but liquidity constrained. Specifically, he has no
wealth of his own and must be advanced the cost of production at the beginning of
any period in which the principal procures the good from him. This gives rise to an
incentive problem in which the agent must be dissuaded from over-stating the cost
of production and pocketing the difference between his reported and actual cost.

We formulate the resulting dynamic mechanism design problem as a recursive
program in which the agent’s promised utility v, at any time ¢ is the relevant state
variable that is naturally interpreted as his relational capital with the principal[l]
Recall that in the static version of the problem, the optimal contract calls for the
principal to offer the agent a take-it-or-leave-it offer (ie, bang-bang procurement) of

(1) There is a growing body of evidence on the importance of relational capital in supply chain
management (eg, cost and quality control). See, for example, Cousins et al. (2006) and Krause,
Handfield and Tyler (2007).



a payment of ¢, so that if the agent accepts, he will produce the good in exchange of
a payment of c,, and if he declines the offer, he gets no payment. Moreover, there
exist a wide variety of distributions for which we may ignore the restriction that
output be monotone in type.

We show that the optimal dynamic mechanism differs sharply from the optimal
static one. Even in the case of the uniform distribution, bang-bang procurement is
suboptimal until his relational capital is sufficiently high, and so the monotonicity
constraint binds for a positive measure of types even for the uniform distribution.
Thus, the optimal contract will, at least at low levels of relational capital, involve
probabilistic procurement. (Although this result is only stated for the uniform distri-
bution, the underlying logic holds for all distributions.) Consequently, the optimal
dynamic contract cannot be implemented via a sequence of take-it-or-leave-it con-
tracts (where the take-it-or-leave-it payment c, is history dependent).

We establish the existence of a critical level of relational capital v* such
that v, < v* implies that the agent is incentivised purely through adjustments to
relational capital and v; = v* implies that he is a vested partner in the enterprise and
is incentivised purely through cash rewards. For v; < v* the principal’s allocation
decision is ex ante inefficient and favors the market over the agent. For v, = v* the
optimal allocation is efficient so that the principal procures from the agent if, and
only if, the agent’s cost realisation ¢; < d.

The derivative of the principal’s value function is shown to be a martingale.
Thus, the martingale convergence theorem implies that relational capital process
(vy) will eventually reach the critical absorbing state v* with probability 1. That is,
the agent will eventually become a vested partner under the optimal contract.

We provide an overview of our results in the next subsection, placing them
in context, and review related literature in section [I.2] The model is outlined in
section [2] In section [3] we formulate the principal’s contract design problem as
a recursive dynamic program and prove the existence of an optimal contract (ie,
an optimal policy). We use techniques from control theory to analyze the optimal
contract in sectiond] In section 5| we derive both short- and long-run dynamics of
the contractual relationship. We provide some brief concluding remarks in section
[l Proofs not in the text appear in the appendix.

1.1.  Overview of Results

Our main contribution provides necessary and sufficient conditions for a contract to
be optimal. The result of note here is that in contrast to the static setting, bang-bang
allocations need not be optimal. This is due to the fact that the principal’s value



function (which is a function of promised utility) is concave and has unbounded
derivative when the agent’s promised utility is zero. Therefore, continuation surplus
is concave and increasing, and for sufficiently small promised utility, marginal
social surplus is unboundedly large. The proof of Proposition 4.2 supposes that a
bang-bang allocation is optimal, and then considers lowering continuation utility
for the lowest cost type, and raising it for the highest cost types. Because of the
bang-bang nature of the posited allocation, a large fraction of high cost types all have
increased continuation utility. This raises social surplus, but there is also a loss in
social surplus for the low cost types, as well as the concomitant loss in instantaneous
surplus that comes with this change in continuation utilities. Once again, because
marginal social surplus is unboundedly large for sufficiently small promised utility,
we find an improvement to a bang-bang allocation.

We offer another, heuristic, argument that highlights the difference between
the static and dynamic settings. In the static setting, incentive compatibility requires
that output be nonincreasing in type. This is equivalent to the requirement that
the agent’s utility function be decreasing and convex as a function of the type
¢ € [0, 1]. Moreover, the derivative of the utility function is precisely the probability
of procurement, and hence is bounded below by 0 and above by 1. The space of such
utility functions is closed and convex and may be regarded as the principal’s control
set. The principal’s objective is linear on this set of utility functions and hence the
optimal control must be an extreme point. A well-known result from convex analysis
states that the set of extreme points of this convex set consists of utility functions
whose derivatives are either 0 or 1 almost everywhere, so bang-bang procurement
is optimal. Notice that this result does not depend on the distribution of types. In
the dynamic setting, the principal’s control is essentially unchanged. However, the
principal’s objective function, more specifically, his utility from promising the agent
some continuation utility, is concave on the control set, and so extreme points need no
longer be optimal. Indeed, as we show by example, even for the uniform distribution,
bang-bang allocations are suboptimal for some levels of promised utility (relational
capital).

Our findings rely crucially on the dynamic nature of the problem, a feature
captured by the continuation utility term. Our next result (Theorem [3) shows that
eventually, with probability one, the agent will become a vested partner in the firm.
Proposition [5.3] shows that this is a permanent state of affairs in that, upon being
vested, the agent remains a vested partner forever. Specifically, in each period, the
vested agent gets first right of refusal to produce the good in lieu of a payment of d.

It is worth noting that in other studies in dynamic mechanism design, be it
in the iid setting of, say, Thomas and Worrall (1990), or the more general (non-



iid) setting of, say, Pavan, Segal and Toikka (2014)) — both of which are described
below — ironing is not a critical feature of the optimal contract, while in our model,
ironing cannot be ruled out even for the uniform distribution. The reason for this
is that in these other studies, the agent is not faced with the twin constraints of
liquidity and participation. For sufficiently small levels of promised utility, these
two constraints ensure that the shape of promised utility, as a function of cost type,
is very flat, leading to a loss of social surplus. In contrast, in Thomas and Worrall
(1990) for instance, there are no lower bounds for the agent’s utility, and so it is easy
to incentivise the agent by suitably lowering his continuation utility. Heuristically,
this leads to a steeper promised utility function. Our results show that liquidity
and participation constraints taken together have novel, and heretofore, unexplored
effects on the structure of the optimal contract.

1.2.  Related Literature

This paper contributes to a growing body of work in dynamic mechanism design.
As is common in this line of research, we employ recursive techniques for analyzing
dynamic agency problems pioneered by Green (1987)) (who studied social insurance),
Spear and Srivastava (1987) (who studied dynamic moral hazard), and Thomas and
Worrall (1990) (who examined income smoothing under private information), in
which shocks are iid over time and the state variable is taken to be the expected
present value of the agent’s utility under the continuation contract.

The model we study has formal similarities to a strand of research in corporate
finance known as dynamic cash flow diversion (CFD) models. See, for example,
Quadrini (2004), Clementi and Hopenhayn (2006)), DeMarzo and Sannikov (2006)),
DeMarzo and Fishman (2007), and Biais et al. (2007) among others. All of these pa-
pers assume a risk-neutral agent who either has limited liability or is less patient than
the risk-neutral principal. There are several key differences between the environment
we study and the one analyzed in the dynamic CFD literature. First and foremost,
the underlying problem facing the principal in CFD models involves moral hazard,
ie, a situation in which the agent must be given incentives either not to expropriate
privately observed cash flows for his personal use or to privately exert personally
costly effort. (As DeMarzo and Fishman (2007) demonstrate, these two situations
are formally equivalent.) We, by contrast, study a setting of adverse selection and
intra-temporal screening that cannot be interpreted as moral hazard ]

Specifically, the principal in our model wishes to tailor her contemporaneous

(2) The conditions under which ex post hidden information, as in the CFD models, is analogous to
moral hazard are articulated in Milgrom (1987)).



policy decision of whether to procure a unit of output in the current period to the
agent’s private information regarding the realization of his continuously distributed
cost of production. Rather than corporate finance, our focus is rooted in questions
of procurement and monopolistic screening more readily identified with industrial
organization and regulation [

The paper most closely related to this one is Krishna, Lopomo and Taylor
(2013)). Like us, they study a setting of dynamic procurement in which the agent has
iid cost shocks and is liquidity constrained. There are, however, significant technical
differences between the two environments studied as well as important differences
in results. Formally, Krishna, Lopomo and Taylor (2013) analyze a model in which
the principal’s utility over output is given by a smooth concave function and the
agent’s cost realization may take on one of two values. In the current paper, we
study a setting of unit demand by the principal and a continuum of cost types for
the agent. Hence we analyze a setting that is more granular in one dimension and
smoother in another. Studying a continuum of types requires us to use novel optimal
control techniques developed by Hellwig (2009). This analysis reveals one of our key
insights, namely that in contrast with the static setting, probabilistic procurement of
output is generally unavoidable, and that output need not be bang-bang.

There are also several other recent investigations of screening mechanisms in
dynamic environments. For instance, Bergemann and Vilimiki (2010) introduce
and analyze a dynamic version of the VCG pivot mechanism. In a recent article,
Pavan, Segal and Toikka (2014) study dynamic screening in a setting in which
the distribution of types may be non-stationary and agents’ payoffs need not be
time-separable. These authors derive a generalization of the envelope formula of
Myerson (1981)) for incentive compatible static mechanisms and use this to compute
a dynamic representation for virtual surplus in the case of quasi-linear preferences.
While their analysis is illuminating, the generality of their model prohibits use of
the recursive methods at the core of our study.

Boleslavsky and Said (2012) explore a dynamic selling mechanism in which
a consumer possesses both permanent private information about his propensity to
have high or low taste shocks and transitory private information about his current
(conditionally independent) shock. Contrary to our setting, the optimal contract in
Boleslavsky and Said’s model exhibits allocational inefficiency in the long run —
after a sufficiently long time horizon, the supplier will eventually refuse to serve the
consumer.

The main difference between the present paper and those mentioned above is
that they focus on settings where the agent’s information is not iid over time, but

(3) See, for example, Laffont and Martimort (2002, p 86).



where they do not impose strong liquidity constraints. In contrast, our results about
ironing of output and non bang-bang output owe their existence to the combination
of liquidity and participation constraints.

2. The Model

A principal has unit demand for a good in every period t = 0, 1,2, . ... Her instant-
aneous utility from consumption of the good is normalised to 1, while absence of
consumption yields her 0. In each period the principal can procure the good from
a competitive market at a fixed cost of d € (0, 1]. In addition, the principal has
the option of procuring the good from an agent, with whom she can enter into a
long-term contract. The agent produces the good at a cost of ¢ € [0, 1], where c is
drawn from a distribution F and is iid over time. Moreover, the cost ¢ is privately
known to the agent. The distribution F' has continuous density f, where f(c) > 0
forall ¢ € [0, 1].

Both the principal and the agent discount future utility at the rate § € (0, 1).
We assume the principal can commit to the contract with the agent, but the agent
can leave at any date to an outside option worth 0. Furthermore, we assume that the
agent is liquidity constrained in every period, and so must be paid at least his cost
of production.

We distinguish between a liquidity constraint under which an agent must be
paid up front in order to produce and limited liability under which an agent cannot
be paid a negative wage after producing. Limited liability is often assumed in hidden
action models where an agent, though wealth constrained, may exert costly effort to
produce output for which he may not be reimbursed, but cannot be further penalized
monetarily. In a hidden information setting like ours, wealth of zero precludes agents
from producing without being advanced payment by the principal.

The timing runs as follows. At the beginning of the game the principal offers
the agent an infinite-horizon contract which he may accept or reject. If he rejects,
then the principal procures from the market in every period, while the agent receives
a payoff of 0. If the agent accepts the principal’s offer, the contract is executed.

3. Contract Design

A period-t history A’ is a collection of cost reports in periods 0,1, ...,z — 1. Let H,
denote the set of all period-¢ histories. (We shall take Hy = {&}.) A contract is a
collection of functions (m,,q,) : H; x [0, 1] — [0, 1]?, where m,(h’, ¢;) represents
the transfer and ¢, (h’, ¢;) is the amount procured from the agent, with both being



functions of the past and the current cost report. By the Revelation Principle (eg,
Myerson, 1981), the principal may restrict attention to incentive compatible direct
mechanisms when designing a contract. Moreover, it is well known (see, eg, Thomas
and Worrall, [1990) that in the setting under study, she also may restrict attention to
recursive mechanisms in which the state variable is the agent’s lifetime promised
expected utility under the contract, denoted by v. (This latter feature is a consequence
of the fact that costs are iid over time.)

Thus, a recursive mechanism is a triple (m,q,w) : [0,1] x Ry — [0,1] x
[0, 1] x R4, where for each reported cost ¢ and level of promised utility v, a contract
specifies the probability of production ¢(c, v), the instantaneous payment made
to the agent m(c, v), and the continuation utility w(c, v), which will serve as the
state variable at the beginning of the next period. In what follows, we suppress the
dependence on v whenever there is no cause for confusion.

The agent’s instantaneous rent is u(c) := m(c)—cq(c). Given this, it is technic-
ally convenient to consider contracts of the form (u, w, ¢) rather than (m, g, w). We
now present the contractual constraints under this formulation. Notice that working
with u instead of m allows us to formulate the liquidity constraints in a natural way.

Liquidity: The agent’s liquidity constraints are written as
[Liq] u(c) >0 forall c € [0, 1]

That is, when the agent reports truthfully, the monetary transfer he receives from
the principal, m(c), must cover his production costs cq(c). The liquidity constraints
do not permit wealth accumulation by the agent because any such saving can be
done by the principal on his behalf. In effect, we are assuming that the principal has
access to all markets that the agent has access to. Indeed, the principal saves (and
dis-saves) on the agent’s behalf by adjusting his relational capital v.

Promise Keeping: The promise keeping constraint that the contract must obey is
written as

[PK] / [u(c) + 8w(c)]f(c) dec =v
0

The agent’s lifetime expected payoff v after some history is composed of expectations
over his payoff in the current period, u(c), and his continuation payoff, Sw(c).



Incentives: The local incentive compatibility constraint can be written in differ-
ential form as

[IC] u'(c) + dw'(c) = —q(c) for almost all ¢ € [0, 1]

while the global incentive compatibility condition, which is often referred to as an
implementability condition and requires that ¢ be monotone decreasing, is stated as

[Mon] q'(c) <0 forall c €[0,1]

with the understanding that at points where the derivative of ¢ is not well defined,
we shall take ¢’(c) < 0 to mean limsup,. o [¢(c + €) — g(c —&)]/e < 0. Thus,
at any point of discontinuity, this ‘derivative’ is —oo. The contract (u, w, q) is
incentive compatible if, and only if the probability of production g is (weakly)
decreasing in ¢, and if the utility of type c¢ is given by (integrating) [IC], ie, if
u(c) + dw(c) = u(l) +sw(l) + fcl q(s)ds.

Participation: The agent has an outside option of 0 that he can exercise at any
point in time. The continuation utility w(c) is the sum of expected future rents, and
because instantaneous rents to the agent can never be negative, it follows that we
must include feasibility constraints that require w(c) > 0 for all ¢ € [0, 1]. Thus,
promise keeping [PK] implies that the agent’s lifetime expected utility v is always
nonnegative, and the participation constraint that the contract initially offer him
nonnegative lifetime utility may be ignored.

The following proposition shows that the principal’s problem can be written
as a dynamic program, and establishes that an optimal contract exists by virtue of
being the corresponding policy function.

Theorem 1. The principal’s discounted expected utility under an optimal contract,
(u,q,w), is represented by a unique, concave, and continuously differentiable func-
tion P : Ry — R that satisfies

[VF]

1
P(v) = max /0 [(l —d)+(d —c)q(c) + S(P(w(c)) + w(c))]f(c) dec —v

(u’q’w)

subject to: promise keeping [PK]|, the incentive compatibility conditions and

[Monll, liquidity [Liql, and feasibility q(c) > 0 and w(c) > 0 for all ¢ € [0,1].
Moreover,

(@) P(0) =(1—-d)/(1-9),



(b) there exists v* € [0, 00) such that P'(v) > —1 for 0 < v < v* and P'(v) = —1
forv > v*, where v* = fod F(s)ds/(1 —6), and

() P'(0) = oo.

Notice that social surplus P(v) + v is maximised at any v > v*. In particular,
social surplus is an increasing function of v, that grows until v = v*. The level of
relational capital v* is easily interpreted. If the principal procures from the agent
whenever ¢ < d, and makes a payment of d, then the agent’s instantaneous expected
utility is fod F(s) ds. Therefore, v* is the lifetime utility that accrues to the agent if
the principal always gives the agent the right of first refusal to produce the good
for a payment of d. The following result shows that compensation in any optimal
contract must be backloaded.

Proposition 3.1. For any optimal contract (1, w, ), payments are backloaded, ie,
for any v > 0,

w(c,v) < v* implies u(c,v) =0 for almost all ¢ € [0, 1]

Proof. Suppose, by way of contradiction, that there is an optimal contract (u, w, q)
where both w(c) > 0 and u(c) > 0 for some v € [0,v*) and forall c € A C [0, 1],
where A has positive (Lebesgue) measure. Then, consider the alternative contract
(1, w, q) where ti(c,v) = 0 and dw(c, v) = u(c,v) + Sw(c, v). Notice that the new
contract (i, w, g) does not violate any of the constraints, and gives the agent the
same utility as the original contract. The term u(c) does not enter the principal’s
value function, while P(w) + w is strictly increasing on the set [0, v*]. Because the
set A has positive measure, the principal does strictly better with the new contract
(u,w, q), which is impossible given the optimality of the original contract. [l

The intuition behind this result is that in the dynamic setting, the principal can
induce truth telling via two instruments: instantaneous rent u(c) and continuation
utility w(c), the latter being the sum of expected future rents. The problem with
providing incentives through current rent, u(c), is that this must be non-negative
due to the liquidity constraints; thus, the agent can only be rewarded and never
penalized. Moreover, any instantaneous rent awarded to the agent is spent outside
the contractual relationship and therefore does not benefit the principal. If, however,
the principal chooses to provide the necessary incentives through continuation
payofts w(c), then she can reward the agent by adjusting his relational capital up or
penalize him by adjusting it down. Hence, providing incentives through continuation
utility has two advantages: it keeps payments inside the relationship and it permits
penalties. Once v = v*, liquidity constraints no longer bind (ie, penalties become

10



irrelevant), and the principal can provide the requisite incentives purely through
instantaneous rents.

In light of proposition we define the class of maximal rent (optimal)
contracts wherein w(c,v) < v* for all ¢ € [0, 1], and w(c, v) < v* implies u(c,v) =
0. In such a contract, payments are deferred until the agent’s promised utility reaches
v*, after which the agent is compensated in each period for production, and gets paid
his production cost plus the associated information rent. Intuitively, in a maximal
rent contract, the agent gets paid as soon as possible.

4. Optimal Contracts

In the previous section, we described the existence of a value function, and charac-
terized basic properties of optimal contracts. To gain a further understanding of the
procurement decision in a given period, we next formulate the principal’s instantan-
eous problem as an optimal control problem. Recall that by [IC], u(c) + dw(c) =
u(l) + dw(l) + fcl q(s)ds, while promise keeping [PK] requires that /01 [u(s) +
Sw(s)]f(s)ds = v. Substituting u(c) + Sw(c) in [PK] gives us u(1) + Sw(l) +
fol fcl q(s) f(c) ds de = v. Upon integrating by parts, we see that fol fcl q(s) f(c)dsdc
fol q(s) F(s) ds, which allows us to rewrite [PK] as

1

[PK*] —(u(l) + Sw(l)) + / (v— q(c)F(c)) dc =0

0

Notice that and imply [[PK]. This is because once g is specified, u(c)+dw(c)
is determined, up to a constant of integration, by ¢ as in [IC]. Both [PK] and
are equivalent ways of determining the constant of integration. We are now ready to
examine the allocation problem faced by the principal in each period.

4.1. Optimal Allocations — A Relaxed Look

Consider the principal’s allocation problem after a history wherein the agent is
owed v utiles. We begin by examining the relaxed problem, in which we ignore the
monotonicity constraint [Mon].
With this in mind, the principal’s problem is

(max) [(1 —d)+(d—-c)g+ S(P(w) + w)]f(c) —v

u,q,w
subject to and [PK#). (The maximum value, which is attained in this setting, is at
least as large as P(v).) Notice that in light of proposition [3.1] rents will only be paid

11



if w(c) = v*. Therefore, there is another optimal contract that has u(c) = 0 for all
¢, which clearly implies w(c) may exceed v*. This allows us to ignore the liquidity
constraint [LCig]). In light of this, we may write the Hamiltonian for the problem as

H(c,q(c),w(c)) = [1 —d+(d—-c)g+ 8(P(w) + w)]f(c) —v
— Mc)q(c) + nv —q(c)F(o)]

where ¢(c) is the control variable, w(c) is the state variable, [IC] describes the
evolution of the state, A(c) is the costate variable for [[C], and n is the multiplier
for [PK#. The adjoint equation for this problem requires that A’(c) = —H,,, which
implies

[Adj-r] M(e) = =8[P'(w(e) + 1] f(c)

Because H is linear in ¢, it follows that the optimal choice of ¢ is given as follows:

. ) Ac) F(c)
=1 lfd>C+f(c)+nf(C)

e o) | L F©)

[Opt-r] q(c)yelo.1] if d =c+ 55+ 1575
Ac) F(c)

=0 if d <c+

7@ T 170

The value of w(0) is unspecified, so the transversality condition requires that A(0) =
0. Of course, w(1) is specified according to [PK#], so it follows from a Theorem of
Hestenes—see, for instance, Takayama (1985, Theorem 8.C.4, p. 658)—that

A(l) = =dn
This allows us to integrate A’(c) to obtain
10 == [ [P +1]76)ds
Noting that A(1) = —4n, we find
[4.1] n = /01 [P'(w(s)) 4 1] f(s)ds

Let us define

(4.2] Y(c,v):=c+n

f(e) f(c)

to denote the agent’s virtual cost associated with cost c. The terms ¢ + nF(c)/f(c)
correspond to the static part of the virtual cost, while the last term

Fo) [/‘; [P'(w(s)) + 1] £(s) ds}

s [ /0 [P/ (w(s) + 1]/6) ds] /1)

12



corresponds to the dynamic part of the virtual cost.
It is easy to see that the optimal choice of ¢(c) can now be formulated as

=1 if d > ¥(c,v)
[Opt-r] q(c)q€10,1] if d = y¥(c,v)
=0 if d <¥(c,v)

The special case of § = 0 gives us precisely the virtual cost function for the
static problem with a promise keeping constraint (see Appendix [A). Just as in the
static problem with a promise keeping constraint, the virtual cost function v (c, v)
depends on 1, which in turn depends on v, but unlike the static problem, the virtual
cost also depends on the future marginal social surplus of all superior types. We
record some facts about the virtual cost function.

Proposition 4.1. The virtual cost function ¥ (c, v) is continuous in c¢. For each
v < v*, ¥(d,v) > d, so that a positive measure of types is always excluded.

While it is desirable to always exclude some types, it is still not clear what the
form of the optimal procurement schedule looks like. In the static model with prom-
ise keeping, the standard regularity assumption that F(c)/f(c) is non-decreasing is
sufficient to ensure that the virtual cost function is increasing, implying that mono-
tonicity constraints never bind. Indeed, if F(c)/f(c) is non-decreasing, then the
static virtual cost function ¢ + nF(c)/f(c) is strictly increasing in ¢ (for every fixed
level of v), which implies that the optimal policy will necessarily be bang-bang.

By contrast, in the dynamic setting, even if F(c)/f(c) is non-decreasing, it
may well be the case that ¥/ (c, v) is non-monotone in c. In such a case, ironing will
be necessary. The next proposition shows that even in the case where F is uniform,
for sufficiently small v, bang-bang allocations are suboptimal. Thus, there exists a
positive measure of types for which ¥ (c,v) = d.

Proposition 4.2. Suppose costs are uniformly distributed, so F(c¢) = c. Then, for
all v sufficiently small, there exists a set Cy of positive measure of costs such that
forall c € Cy, ¥ (c,v) =d.

This result stands in stark contrast to the static model, because it says that the
monotonicity (or implementability) condition will bind for sufficiently small levels
of v. To see the intuition for why a bang-bang allocation may not be optimal, suppose
v is small and suppose (by way of contradiction, that) a bang-bang allocation is
optimal. Taking v small ensures that v = 0. By considering a ¢ that is a step function
but not bang-bang, we raise w(d ), which has the effect of reducing w(0). The change

13



in ¢ entails some instantaneous loss of social surplus, but has the effect of increasing
continuation social surplus, and the change in instantaneous social surplus is linear at
the margin. Because v is small, w(d) is small, and because P’(0) = oo, the marginal
increase in continuation social surplus is very large because a large fraction of cost
types benefits from this improvement, and thus dominates the instantaneous loss in
social surplus, ensuring that we can improve on the bang-bang allocation.

This suggests that we should formulate the optimal control problem in such a
way that it is cognizant of the monotonicity constraint [Mon]. A standard approach
following Guesnerie and Laffont (1984)) takes the allocation ¢ as a state variable, and
requires its derivative, ¢’(c) = z(c) to be a control variable, with the monotonicity
condition being reflected by the requirement that z(c) < 0 for all ¢. Unfortunately,
standard optimal control techniques, even those requiring minimal hypotheses—see,
for instance, Clarke (1983))—require the state variable g to be absolutely continuous.
This rules out, among other things, discontinuous allocations, and it is a priori not
clear if ¢ must necessarily be absolutely continuous. (Recall that g in the static
setting is not continuous. Then, it is not clear what the derivative of ¢ is at points of
discontinuity.) Nevertheless, Hellwig (2009) has reformulated the maximum prin-
ciple of Clarke so as to accommodate monotonicity constraints, without requiring
the allocation to be absolutely continuous. We, therefore, consider the problem of
finding an optimal allocation using this version of the maximum principle in the
next section.

4.2.  Optimal Allocations — A Less Relaxed look

As before, the problem of optimal allocation requires the principal to solve

[P] Max [(1=d) + (d = c)gq(c) + §(P(w(c)) +w(e)]f(e) —v

subject to [IC], [PK], and and feasibility. To formulate this problem as an optimal
control problem, we follow Hellwig (2009). Notice that because g is monotone
decreasing, it can be represented as the sum of an absolutely continuous function
and a singular function. (This is just the Lebesgue decomposition of ¢.) Let z(c)
be the Radon-Nikodym derivative of the absolutely continuous part of ¢. This will
be our control variable. The state variables will be ¢(c) and w(c). As in the relaxed
approach above in section [4.1], we shall consider contracts where v = 0 for all c.
The evolution of w is governed by the state equation [[C]; let A(c) be the costate
variable for this equation. The integral constraint [PK] has the (constant) Lagrange
multiplier n. The monotonicity constraint is captured by the requirement that
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—z(c) > 0; let £(c) be the multiplier for this constraint. There are two feasibility
constraints to consider:

[Feasl] q(c) >0
[FeasO] q(c) =1

Let B(c) be the multiplier for and y the (constant) multiplier for [Feas0]. We
are now ready to state the Hamiltonian.

H() =[(1—d) +(d = )q(c) + 8§(P(w(c)) + w(e))]f(c) —v
Ae)(=q(c)) + 8n[v —w(e) f(e)] = E(c)z(c) + B(c)g(c)

The adjoint equations are given by

[Adj-w] AN(c) = —Hy = =8[P'(w(c)) + 1] f(c) + 8nf(c)
and
[Adj-q] E'(c) =—Hy; =—(d —c)f(c) + Alc) — B(c)

Notice that there are no boundary conditions for w, since the level of w will be de-
termined by the promise keeping constraint. Therefore, A(1) = A(0) = 0. Integrating,
we find

Alc) = —5/0 [P (w(c)) + 1] f(c)de + ndF(c)

In particular, the fact that A(1) = 0 implies

[4.3] —1+7 =/0 P'(w(c)) f(c)de

By theorem 3.1 of Hellwig (2009), we obtain £ < 0 and £(1) = 0. Therefore, we
can integrate to obtain

44 £(c) = [ [(d — &) £(0) = A(e) + B(e)] de

By Theorem 3.1 of Hellwig (2009), a necessary and sufficient condition for optim-
ality with respectto z <0isé <0and £z = 0.

Note the role of B(c) here. In the static case, if ¢ > d, the socially optimal
solution calls for ¢ = —oo if we are allowed to ignore [Feas0]. At such cost levels, g is
positive. However, as noted in proposition 4.2} in the dynamic setting (where § > 0),
it no longer follows that bang-bang allocation policies are optimal. We summarise
our discussion here with
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Theorem 2. The optimal policy q(c, v) corresponds to maximising the Hamiltonian
by choosing & such that § < 0and £z = 0.

In conjunction, proposition 4.2] and Theorem [2] say that due to liquidity con-
straints, the optimal allocation in the dynamic setting is very different from the
static setting. The static setting (even in the presence of promise keeping) entails
bang-bang allocations, and for suitable distributions of types, we may ignore the
monotonicity constraint [Mon]. In contrast, in the dynamic setting, we cannot ignore
the monotonicity constraint [Mon], and it may well be that bang-bang allocations are
suboptimal.

S. Dynamics

Finally we derive both short- and long-run dynamics of the contractual relationship.
It is easy to see from the envelope condition for the Hamiltonian that P/'(v) + 1 = ».
We thus obtain

Lemma 5.1. An optimal contract induces a process P’ that is a martingale: ie,

P'(v) :/0 P'(w(c)) f(c)de

Proof. The envelope condition states that P/(v) = —1+ 7, while we have established
in [@3] above that —1 + n = fol P’(w(c)) f(c) de, which concludes the proof. [

Proposition 5.2. In an optimal contract, for all v € (0,v*), we have P'(w(1)) >
P’(v) > P'(w(0)). Moreover, w(0,v) > v > w(l,v).

By [PK#], we have u(1) + w(l) = v — fol q(c)F(c)dc. This implies w(0, v) >
v > w(l,v) for all v € (0, v*). In other words, incentive compatibility and promise
keeping force the principal to spread out the agent’s continuation utilities, rewarding
him for favorable (low) cost reports and penalizing him for unfavorable (high) cost
ones. The proposition shows that, in fact, P/(w(1)) > P’(v) > P’(w(0)). This
follows easily if P is strictly concave. The proposition shows this to be the case even
though we are unable to establish that P is strictly concave.

We are now in a position to describe the long-run properties of the optimal
contract.

Theorem 3. In any optimal contract, the principal eventually (with probability one)
procures from the agent if, and only if, the cost realisation in any period is less than
d. In other words, eventually, the principal will have no distortions in procurement
(though she will still pay the corresponding information rents). Formally, we have
that the martingale P’ converges almost surely to P, = —1.
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From the martingale convergence theorem, it follows that P’ must converge,
almost surely, to an integrable random variable P/ . The theorem establishes that
along almost all sample paths, this limit must be —1. That P’ cannot settle down to
a finite limit greater than —1 follows from proposition above and the continuity
of the contract in v.

Proposition [5.2] says that for v € (0, v*), the agent is rewarded for reporting a
low cost realization and penalized for reporting a high one. Because P’(0) = oo,
an arbitrarily long string of penalties never pushes the agent’s continuation utility
into the absorbing state at v = 0. An arbitrarily long string of rewards, however,
will eventually drive his continuation utility into the absorbing state at v = v*. It
is possible to show that with positive probability, the martingale P’ can take all
values in (—1, co). Moreover, we can show that for any starting value v € (0, v*),
the martingale P’ reaches v* in finite time with probability one. Proofs of these
statements are omitted because they are very similar to propositions in Krishna,
Lopomo and Taylor (2013).

Theorem [3]says that with probability 1, the agent will eventually experience a
sufficiently long sequence of rewards to become a vested partner in the firm. In fact,
the optimal maximal rent contract at v = v* is particularly easy to characterize.

Proposition 5.3. Upon becoming a vested partner, in a maximal rent contract there
is no longer any output distortion so g(c¢) = 1if ¢ < d and 0 otherwise, and promised
utility w(c) = v* for all ¢ € [0, 1]. Furthermore, this contract is implemented by
giving the inside agent, in each period, a first right of refusal for production in
exchange for a fixed payment of d.

Proof. The proof of part (b) of Theorem [I]implies that for v = v*, we must have
no distortion in output, ie, g(c) = 1 if ¢ < d and 0 otherwise, and promised utility
w(c) = v* forall ¢ € [0, 1].

This results in a stream of non-negative rents according to u(c) := u(1) +
fCCqu(x) dx, where u(1) = 0. Then, u(c) = max[d —¢,0] = 0 forall ¢ > d,
and is equal to d — ¢ for all ¢ < d. Therefore, the expected rent in any period is
fol u(c) f(c)de = fod(d —c¢)f(c)de = F(d)(d —E[c | ¢ < d]). Since the agent will
receive, upon becoming a vested partner, precisely this expected utility in every
period, it follows that

*

_ Fd)(d —E[c|c<d])
N 1—§

This can be implemented as follows: The principal offers the fully vested agent
the option to produce in exchange for a payment of d. Clearly, the agent will only
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accept if his true cost is less than d, an event whose probability is F(d). The agent’s
expected cost of production is precisely E[c | ¢ < d], which shows why v* is a
vested agent’s lifetime expected utility. [l

The principal’s utility at this stage of the relationship is then given by equation
P(*)+v* = max(,w,q) fol [1 —d+(d—c)q(c)] f(c)de + S(P(v*) + v*). As noted
above, with v = v*, there are no more output distortions, so g(c) = lif ¢ < d
and 0 otherwise. Therefore, (P (v*) + v*)(1 —=8) = (1 —d) + fod (d—c)f(c)de =
(1—d)+ F(d)(d —E[c | c =d]) = (1 —d) + v*(1 = 9).

This implies that the principal’s expected utility when the agent is fully vested
is
1—-d
1-8
so that the principal pays d in every period, regardless of whether she procures
from the fully vested agent or from a competitive market. Notice that P(v*) = P(0),

P(v*) =

meaning that eventually, all the social surplus generated by producing at a cost less
than d goes to the agent, with the principal being exactly indifferent to the presence
of the agent. However, this is a consequence of all rents being backloaded — from
the moment the agent was hired at some initial level of promised utility (which is
easily seen to be strictly greater than 0), the agent’s payments have been deferred
until he becomes a vested partner, and all social surplus up to that point has been
captured by the principal.

6. Conclusion

In this paper we analyze a setting in which a principal wishes to procure a single unit
of a good in each period over an infinite horizon. She may procure from the market
at known cost d or from an agent who has privately known cost drawn each period
from a continuous distribution. The agent is risk-neutral but liquidity constrained
and so must be advanced his reported cost by the principal in every period when he
produces.

We formulate the resulting dynamic mechanism design problem as a recursive
program in which the agent’s promised utility at any point is the relevant state
variable that is naturally interpreted as his relational capital. We prove two results
that contrast sharply with the solution to the static problem. First, ironing of the
output cannot be ruled out by any regularity conditions on the distribution of costs.
Second, the optimal allocation is not generally characterized by a cost cutoff, ie, it
will involve probabilistic procurement for some levels of relational capital (promised
utility).
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We prove that the agent eventually builds up enough relational capital to
become a vested partner in the enterprise. Prior to attaining this state, the agent is
incentivised exclusively through adjustments to his relational capital, while after
achieving it he receives non-negative rents paid in cash.

Several avenues remain open for future work. For example, it would be in-
teresting to study the impact of liquidity constraints under more general stochastic
processes governing the agent’s cost. Also, enriching the model by considering a
setting with multiple agents would be an edifying direction for further investigation.

Appendices

A. The Static Model

In this section, we consider the static problem with a promise keeping constraint.
The problem is as stated in the text, with the additional resrtiction that § = 0.
In that case, the incentive constraint reduces to

[IC-static] u'(¢c) = —q(c) for almost all ¢ € [0, 1]

For the moment, we will ignore the implementability constraint [Mon]. The promise
keeping constraint reduces to

1
[PK-static] / u(c) f(cyde =v
0

We shall formulate this as an optimal control problem with ¢ as the control variable,
and u’ as the state variable. The (static) value function can be written as Py (v),
where

1
[VF-static] Py(v) = r(zlz))(/() [(1 —d)+(d - c)q(c)]f(c) dc —v

subject to [[C-statid] and [PK-static]. In the formulation of Py(}'), notice that the in-
stantaneous utility to the principal is (1 — d) + (d — ¢)q(c) — u(c). Using
results in Py(v) above in [VF-statid].

The condition governs the evolution of the state variable, and we
shall let A(c) denote the costate variable for this equation. Similarly, we shall let n
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denote the multiplier for the constraint [PKstatic]. The (static) Hamiltonian can be
written as

Ho(c,q(c),u(c), Ac),n,v) = [(1=d)+(d—c)q(c)] f(c)—=A(c)q(e)+n[v—u(c) f(c)]
The optimality condition for ¢, namely H,, = 0, results in
[FOC-q] d>c+A/f(c)

while the adjoint equation is

0H,
[Adj-u] M) === =nf()
u
Because u(0) is free, A(0) = 0, so integrating [Adj-ul], we get A(c) = nF(c). Substitut-
ing in [FOC-q]l, we see that principal procures from the inside agent (with probability
1) if, and only if,

F(c)
c+n <d
f(e)
The envelope condition is Pj(v) = —1 + 5. Notice that the optimal choice of v

is such that n = 1, and this results in the standard procurement rule, where the
principal procures from the agent if, and only if, ¢ + F(c)/f(c) < d.

Thus far, we have said nothing of the implementability condition [Mon]. If
we make the assumption that F(c)/f(c) is decreasing in ¢ — a property known as
decreasing inverse hazard rate — the implementability condition is immediately
satisfied. Of course, if this condition does not hold, then one has to iron out the
non-monotonicities in the optimal q.

It is easy to verify that Py(0) = 1 — d, and that Py is concave. We shall now
establish that the derivative of Py at 0 is unbounded above.

Lemma A.1. The function Py(v) is continuous, and has Pj(0) = oo.

Proof. The continuity of Py is easy to establish, and so we omit it here. To see the
derivative, notice that integrating [[C-static], we obtain u(c) = u(1) + [ cl q(x)dx.
Using this in [PKstatic], we obtain v — u(1) = fol q(x)F(x)dx. For v sufficiently
small, there exist contracts where we may set u(1) = 0, without violating [PK-statid].
Therefore, consider a contract where u(1) = 0, ¢(v) is such that v =: OE(U) F(x)dx,
and ¢(c) = 1 if, and only if, ¢ < ¢(v). Define u(c) by u(c) = fcl q(x)dx. By
construction, this contract is incentive compatible, and satisfies promise keeping.

The requirement v =: foc © g (x) dx implicitly defines the function ¢(v), and
has the property that ¢(v) N\ 0 as v N\ 0. Moreover, differentiating both sides of the
expression with respect to v gives us 1 = F(¢(v))¢’(v).
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The utility to the principal from this contract is denoted by ¢(v) := OE(v)(l —

o) f(e)yde + [l (1=d) f(e)de —v = (d =) F () + (1 —d) + [ F(c)dec .
Then, ¢'(v) = (d — ¢) f(¢(v))/F(¢(v)) — 1, where we have used the fact that
1 = F(c(v))c’(v). This implies lim,_, ¢’(v) = oo, because f(0) > 0. Observe that
©(0) = Py(0), although ¢(v) < Py(v) for all v > 0.

Finally, note that Py(v) is concave, so that for all v > 0, P;(0) > [Po(v) —
Py(0)]/v, so that

Po(v) — Po(0)

P;(0) = 1i
o( ) vl\l;r(l) ’
> fim ¢(v) —¢(0)
v\ 0 v
= ¢'(0) = o0
which completes the proof. [l

B. Proofs from Section

We begin with a proof of Theorem [I}

Proof of Theorem|[l| The proof is somewhat non-standard, because for each v €
[0, 00), the control set of permitted (1, w, g) is non-compact because the control set
is infinite dimensional. Therefore, we resort to some indirect methods to establish
the desired properties. Nevertheless, some parts of the proof borrow from the proof
of existence in Krishna, Lopomo and Taylor (2013).

We shall begin by showing that there exists a function P : R, — R that
satisfies

[VF-sup]

1
P(v) = (sup)/o [A—d)+ (d —c)g(c) + 8(P(w(c)) + w(c))]f(c)de —v
u,q,w

subject to feasibility, promise keeping [PK]|, the incentive compatibility conditions
and [Mon]], and liquidity [Ciq]. After establishing the existence of such a P, we
shall show that the supremum is actually achieved for each v, which gives us the
value function [VH].

First, as a lower bound for P, notice that the principal can always just give the
agent v utiles without requiring any production. This would give the agent v utiles
and cost the principal —v utiles, thus forming a lower bound for her utility.
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An upper bound for the principal’s value function obtains if we consider the
case where there is full information, in which case, the principal’s utility is

ﬁ/lmax[l—c,l—d]f(c)dc—v
—0 Jo

This entails giving the inside agent exactly v utiles (net of production costs), but
paying the true cost of production in each period. Therefore, the value function P (v)
must lie within these bounds, ie, must satisfy

0 < Plv)4+v < —/ max[l —c,1—d]f(c)dc

Let RI%-%) be the space of all real functions on [0, o), and let

{QER[OOO) 0<Q(v)+v§1T/ max[l — c, l—d]f(c)dc}

be endowed with the ‘sup’ metric, which makes it a complete metric space. (It is
easy to see that & is isomorphic to a closed subset of the normed space C;[0, o0o) of
all continuous and bounded functions on [0, c0). Indeed, let ®(Q)(v) := Q(v)+v €
C,[0, 00), so that @ is an isometric continuous bijection.)

Let &, be the set of all concave functions in &, let %, be the set of all functions
0 € F such that Q(v)+v is constant for all v > v*, where v* := fod F(x)dx/(1-9),
and let F; be the set of all functions in & that are continuous at 0. It is easy to see
that &; is a closed subset of F fori = 1,2, 3.

Let T'(v) := {(u,q, w) € (RI®1)3} such that (u, ¢, w) satisfies [PK], [T}, [Monl,
[Ciql, and the feasibility constraints. Thus, I'(v) represents the set of permissible
(u,q,w).

Define the operator T : ¥ — & as

1

TO)(w) = sup [ [(1—d) + (d — )q(c)

(u,q,w) JO

+ 8(Q(w(c)) + w(c))] f(c)de —v
s.t. (u,q,w)eTl'(v)

for each Q € #. It is easy to see that TOQWw)+v>(1-d)/(1—=45)forallv > 0.
Similarly, because Q(v) + v < 1_5 fo max[l — ¢, 1 — d] f(c)dc, it follows that
TOW)+v < ﬁ fol max[l —c,1 —d] f(c)dc, so T is a well defined operator.
Consider first the case where Q € %, and notice that I"(v) is convex for each
v > 0. Moreover, if v,v’ > 0, (u,q,w) € I'(v), and (v, ¢’, w’) € T'(v’), then for all
a €[0,1],0(u,q, w)+ (1—a)(u',q’,w’) € I'(ev + (1 —)v’). This is because all the
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constraints that define I"(v) are linear inequalities. We can now adapt the arguments
in Stokey, Lucas and Prescott (1989, Theorem 4.8, p 81) to conclude that if Q € F,
we must also have TQ concave.

Let us now assume that Q € %, so that Q’(v) = —1 for all v > v*. Consider
the relaxed problem

sup /O [(1—d)+ (d —c)q(c) + 8(Q(w(c)) + w(c))] f(c)de —v

(u’qu)

S.t. and Feasibility

where v > v*. It is easy to see that every feasible solution to this problem must
have g(c) = 1 for all ¢ € [0,d] and g(c) = 0 otherwise. With this choice of ¢, any
choice of u(c) + dw(c) that satisfies with the property that w(c) > v* cannot be
improved upon, because Q(w) + w is a constant for v > v*. So, let us set w(c) = v*
forall ¢ € [0, 1], set u(1) = v —§v* — [ F(c)de, and u(c) := u(1) + [ q(x)dx =
u(1) + max[d — ¢, 0]. This choice of (v, w, g) is a solution to the relaxed problem.
But by construction, (4, w, ¢g) also satisfies and [Mon]. (Indeed, our choice of
u(1) comes from [PK¥].)

With these specifications, we see that (u, w, g) € I'(v), and is a solution to the
original problem defined by TQ. So for any Q € %,,

TO®Ww) = /01 [max[l —c,1—d]+6v* + SQ(U*)]f(c) dc —v

for all v > v*. Indeed, with this contract, for any v,v’ > v*, TQ(v) = TQ((') =
—(v —'), thatis, (TQ)'(v) = —1 for all v > v*. This proves that TQ € %,.

We have established above that by [PK] and [IC], u(1)+dw(1) = v—fo1 q(c)F(c)dc.
Because u(1), w(1) > 0 (by feasibility) and because ¢ is a monotone function, it
follows that 0 < fol q(c)F(c)dc < v. Therefore, as v N\ 0, g \ 0 almost surely, and
in particular, in L!. Therefore, for any Q € %3,

1
TOW) < sup /0 [(1—d) + (d — )q(©)] f(c) de

(u,w,q)el’(v)

1

+  sup 8/ [w(c) + O (w(c))]f(c)de —v
(w,w,)el(v) JO

The first problem is essentially a static optimisation problem, and so has the solution

thatg(c) = 1 forc < c*(v), while g(c) = 0 otherwise. It is easy to see that c*(v) \( 0

as v \ 0. Therefore, the first term tends to 0. Similarly, for the second term, we must

have Sw(l) = v — fol q(c)F(c)dc, and sw(c) = dw(l) + fcl q(x) dx, and because
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0 is continuous at 0, it follows that the second term converges to (1 —d)/(1 —§).
This proves that TQ is also continuous at 0.

It is easy to see that T is monotone (Q; < @, implies TQ; < TQ,) and
satisfies discounting (T(Q + a) = TQ + da where 0 < § < 1) which implies
that T is a contraction mapping on . We have just established above that if Q €
F1NF, N Fz, then TQ € F; N F, N F3. But this implies that the unique fixed point
of T, which we shall call P, also lies in 1 N %, N F3 — see Stokey, Lucas and
Prescott (1989, Corollary 1, p 52). Finally, observe that P is concave on [0, co), and
because every concave function is continuous in the interior of its domain, P is
continuous everywhere.

Let us define

Co(v) :={w € C[0,1] : w > 0, has 8]01 w(c) f(c)dc = v, is convex,
decreasing, and has dw(c) C [-1,0] V ¢ € [0, 1]}

where dw(c) is the subdifferential of the convex function w. Now define the map
¥ : Ty(v) — T'(v) defined as ¥(w) = (0,w,q) where —q(c) € Jdw(c) for all
¢ € [0,1], and notice that W is an injective map. Then, for any w € Ty(v), Yw
satisfies by definition of I'y(v), because —¢q(c) € dw(c), because w
is continuous and convex which implies ¢ is monotone decreasing, and Feasibility
because dw C [0, 1] which implies ¢ € [0, 1] and w > 0 which ensures liquidity and
participation constraints hold.

It is easy to see, most notably because u doesn’t appear on the right hand side
of [VF-sup], that in any contract, we may set u = 0 and let all the utility due the
agent accrue via w. Therefore, it is without loss of generality to restrict attention to
the choice set I'g(v) for all v > 0, when considering the supremum in [VF-sup]. Note
that for each v > 0, I'y(v) is closed and bounded as a subset of CJ0, 1]. But all the
functions in ['g(v) have the same Lipschitz constant, namely 1, which means that
I'o(v) is equicontinuous. Therefore, I'g(v) is compact by the Arzela-Ascoli Theorem
— see, for instace, Ok (2007)).

Because P(v) + v € Cp[0, 00), it follows that the supremum on the right hand
side of is reached for every v > 0. Moreover, by Berge’s Theorem of the
Maximum — see Ok (2007) — the optimal policy (u, w, ¢)(v) is continuous in v.

To see part (b), we will use the characterisation of the optimal allocations
provided in section[4.2] Suppose ¥ = min{v : P'(v) = —1} < v*, so that P'(0) =
P’(v*) = —1. Then, at v, n(v) = 0 (by the envelope condition), so by [£3], we
must necessarily have fol [P’ (w(c))+1] f(c) dc = 0, which implies P'(w(c)) = —1
for almost all ¢. But w is monotone decreasing and continuous, so we must have
P'(w(c)) = —1forall ¢ €]0,1].
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Substituting fol [P'(w(c)) + 1] f(c)de = 0 into [Adf-w], we find that A(c) =0
for all c¢. This, in turn, implies that in [&4], £(c) is as in a static problem, and
allocations are first best. That is, ¢(c, 0) = 1 if ¢ < d, while g(c,0) =0if ¢ > d.

As noted before, we may restrict attention, without loss of generality, to con-
tracts where u = 0. Then, sw(l) = v — fod F(c)dec = v — (1 = §)v*. Therefore,
§(w(1) —9) = (1 —8)(0 — v*) < 0, which implies w(1) < 9, because O < v*. But
we have already established that P/(w(1)) = —1, which is a contradiction.

We now establish part (c¢) and show that P/(0) = oo. It is easy to see that
P(0) = (1—d)/(1-38). Since P is concave, we know P’(0) > [ P(v)—P(0)]/v forall
v > 0. Recall that Py(v) is the value function associated with the static optimisation
problem (see appendix [A)). Therefore, for each v > 0, P(v) > Py(v)/(1 — §), while
P(0) = Py(0)/(1 —§). This gives us the bound

P’(0) = lim w

v\ 0 v
. Po(v) = Py(0) 1
m

> i
o\ v 1-46

= P;(0) = o0

where we have used the fact that Pj(0) = oo, which was established in lemma

A u

C. Proofs from Sections@

Proof of Proposition For a fixed v, it is easy to see that the static part of the
virtual cost function, ¢ + nF(c)/f(c) is continuous in c. It is easy to see that
Jo [P'(w(s)) + 1] f(s)ds is continuous in ¢, and because f(c) > 0, it follows
that the dynamic part of the virtual cost is also continuous in c. Therefore, ¥ (c, v)
is continuous in ¢, proving the first claim.

To prove the second claim, let us define X(s) := P’(w(s)) + 1, so that from
equation [£1], n = fol X(s) f(s)ds. Given that ¥ (c, v) is continuous in ¢, it suffices to
show that ¢ (d, v) > d. This is equivalent to showing that n F(d) > § fod X(s)f(s)ds.
We will prove the claim for § = 1, from which the claim will follow for all § € [0, 1).

Notice that nF(d) = F(d)[ fod X(s)f(s) ds—l—fd1 X(s)f(s) d(s)], sothatnF(d)—
19 X(5) f(s)ds = F(d) [ X(s) f(s)ds — (1 — F(d)) [ X(s) f(s)ds. Recall that
w(s) is constant on [d, 1], so f; X(s) f(s)ds = X(d)[1—F(d)]. Moreover, w(s) is de-
creasing in s, but because P is concave, P’(-) is a decreasing function, which implies
P'(w(d)) = P'(w(s)) for all s € [0, d]. Therefore, /Od X(s)f(s)d(s) < X(d)F(d),
where the inequality is strict because w(s) is not constant on [0, d] for any v < v*.
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Putting these facts together, we see that
d
DF(d) — [ X(s) f(s) ds

1 d

— F(d) / X(s) f(s) ds — (1 — F(d)) [ X(s) f(s) ds
d 0

d

= FW)X(@)[1 - F(d)] - (1 - F(d)) [0 X(s) f(s) ds

d
=[1 - F(d)] [X(d)F(d)—[O X(s)f(s)dsi|

>0
which completes the proof. []

Proof of Proposition Suppose, by way of contradiction, that bang-bang alloc-
ations are optimal. Fix v > 0 (which we shall take to be sufficiently small), and
suppose for this v, g(c, v) is bang-bang. Then, there exists x (which depends on
v such that for all ¢ < x, g(c,v) = 1, while for all ¢ > x, g(c,v) = 0. By [PKF],
this allocation induces continuation utility w(1) = v — fol q(c)F(c)dc. Moreover,
Sw(c) = sw(1) + [} dr = §w(1) + max[x — ¢, 0.

Fix ¢ > 0 to be small, such that x — & > 0. Now consider an allocation g such
thatg = gon [0, x —e) U (x, 1], whileg = 1 —h on [x — ¢, x], where & € (0, 1). With
this specification, fO1 (g —q)dc = he > 0.

Let w represent the induced continuation utility. Then, 6w (1)—dw(1) = fol (g—
§)F dc = 2£[2x — ¢] > 0, while §i (1) — §w(1) = §[W(0) — w(0)] — [ (g —q)de =
he[x —e/2—1] <O.

The difference in instantaneous utility from choosing ¢ instead of g is fol (d —
c)(g—¢q)dc = f;_s(d —c)hdc = held — x + ¢/2].

Notice that w(0) < w(0), so some types lose continuation utility by switching
to w. But all these types have cost less than x, since for all types ¢ > x, w(c) =
w(1) > w(1l) = w(c). Therefore, the loss in continuation utility (in switching from
w to W) is no greater than 0 < § [; [ P(w) — P(W) + w — W] dc. Notice that in this
range, P(w) > P(w), and for all ¢, P(w(c)) — P(w(c)) < P'(w(c))(w(c)—w(c)) <
P’'(w(1))(w(0) — w(0)). Therefore,

S/X[P(w)—P(II))—l-w—lI)]dc
0

< 5/0 [P((1))(w(0) — (0)) + w(0) — B(0)] de

< 8he(1 +¢/2—x)[P'(w(l)) + 1]x
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By moving to w from w, all types with cost greater than x gain in continuation
utility. This gain is § [ [P(w) — P(w) + w — w]dc. Because P(w(1)) — P(w(1)) >
P’(w(1))(w(1) — w(1)), the gain in continuation utility is at most

§he(2x —&)[ P'(w(1)) + 1](1 — x)

Therefore, the change to (g, w) from (g, w) is profitable if the gain in utility is greater
than the loss in utility. The difference between gain and loss is, modulo a factor of
he that multiplies all terms,

S[P'w(1) + 1][2x —e—x(1 +x —¢/2)] — [d — x + &/2]

If v is sufficiently small, then x must also be sufficiently small, else dw(l) =
v— fol q(c)F(c)dc > 0 would be violated. It then follows that if we take ¢ sufficiently
small, we can ensure that 2x —e — x(1 + x —&/2) > 0. But because P’(w(1)) is very
large when ¢, v, and x are very small, we see that the gain outweighs the loss, so
it is profitable to switch to the contract (i, w, ¢). This establishes that the optimal
allocation policy cannot be bang-bang. [l

D. Proofs from Sections

Proof of proposition[5.2] Recall that w(c, v) is decreasing in c.. The claim is that
for all v € (0,v*), P'(w(1,v)) > P'(v) > P’(w(0,v)). So suppose the claim is
not true. Since P’ is a martingale, the only possibility then is that P'(w(0,v)) =
P'(w(1,v)) = P'(v).

Recall that w(0,v) — dw(l,v) = fo1 q(c)dc. We now proceed to show, by
contradiction, that P/(w(0,v)) = P'(w(1,v)) = P’(v) is impossible. Let vy := v,
so that w(1,vg) < vo < w(0,v9) and P’(v) > —1. Consider the sequence vy :=
w(0, vk—1), and suppose, as the induction hypothesis, that P’(-) is constant (and
strictly greater than —1) on the interval [w(1, vo), vk], With vg—; € [w(1, vy), Vi].

Since a positive fraction of types always produce, it follows that vy = w(0, vi—1)
vkg—1Which in turn implies that P'(vx) = P’(vik+1). Therefore, P’(-) is constant (and
strictly greater than —1) on the interval [w(0, vg), vk+1]. Since (vg) is a strictly in-
creasing sequence that diverges to infinity, we see that P’(-) must then be constant and
strictly greater than —1 on the interval [w(0, vo), 00), which is impossible because
P’'(v) = —1 for v > v*. This completes the proof. [l

We now move to the proof of Theorem 3| Once again, we follow Thomas and
Worrall (1990).
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Proof of Theorem 3] Since P’is a martingale that is bounded below by —1, it follows
that P’ + 1 is a nonnegative martingale. The Martingale Convergence Theorem (see,
for instance, Theorem 9.4.4 on p 350 of Chung (2001) and its corollary on p 351),
says that P’ + 1 converges almost surely to a nonnegative, integrable limit, P, + 1.
Therefore, P’ converges almost surely to P/, and the limit is integrable (which
implies that P, = oo with zero probability). We want to show that P, = —1 almost
surely.

Before getting to the details, it is useful to sketch the intuition. Consider a
sample path (¢) such that P’ converges along this sample path. Suppose that
along this sample path, P’ converges to some number C > —1 and 9 is such that
P’(v) = C. It must be that eventually, all the values that P’ takes in this sample
path must lie arbitrarily close to C. Therefore, along this path, the step size of the
continuation promises w (0, ¢c®) — w(1, ¢®) must converge to zero. But this would
violate proposition which says that w; (V) — w,(?) is bounded away from zero
and the fact that the optimal contract is continuous in v (which follows easily from
the fact that v enters as a parameter in the Hamiltonian).

By proposition it follows that there exists a function ¢, (v) such that for all
¢ > ¢o(v), P'(w(co(v),v)) > P’(v). Furthermore, it easy to show that this function
can be taken to be continuous. In light of this fact, in any neighbourhood of v, we
can take ¢, (v) to be independent of v. We shall denote this uniform function as ¢,
in this specified neighbourhood.

Consider a sample path with the properties that (i) lim, . P'(v") = C ¢
{—1, 00}, and (ii) state {c : ¢ > ¢o} occurs infinitely often. Define C =: P’(y), so
that lim, ., v = y and consider a subsequence (o (n)) such that ¢c®™ > ¢, for
all n, ie this is the subsequence consisting of all the cost shocks in the original
sequence that lie in the set {c : ¢ > ¢,}. Since (v°™) is a subsequence of (v"), it
also converges to y.

Recall that the evolution of promised utility along any sample path can be
written as ¢(v",c®™) = v**!, where ¢(v,-) is continuous in v. This induces the
function ¢ (v, c™) where ¢ (vV°™ ™) = o+ _Since ¢(v, -) is continuous in v,
it follows that ¢ (v, -) is also continuous in v. Therefore, the sequence ¢ (v°™, ™)
converges to ¢ (y,c). Moreover, ¢°(y,c) = ¢(y,c) = y forall ¢ > ¢, since
@ (V"™ ¢) = vt and lim,_ o V7™ = lim, 0 V" = y.

Butlim, o, P'(v°™) = C and lim,_,, P’(v°®**V) = C, so by the continuity
of P’ wehave P'(y) = P'(¢°(y.c)) = P'(¢(y.c)) = C forall ¢ > c., contradicting
proposition [5.2] which states that P'(y) < P’(¢(y,c)) forall ¢ > c,. In light of the
fact that paths where the set {c : ¢ > ¢,} does not occur infinitely often are of
probability zero, we have proved the proposition. [l
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