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Abstract
If price volatility is caused in some part by taste shocks, then it should be posit-

ively correlated with the liquidity premium. Our argument is based on Krishna
and Sadowski (2014), who provide foundations for a representation of dynamic
choice with taste shocks, and show that volatility in tastes corresponds to a desire
to maintain �exibility. To formally connect volatile tastes to price volatility and
preference for �exibility to the liquidity premium, we analyze a modi�ed simple
Lucas tree economy with two otherwise identical assets, where one provides more
liquidity because its output can be traded on an auxiliary international market,
and where the representative agent is uncertain about his degree of future risk
aversion. We show that a representative agent with a higher degree of uncertainty
about his future risk aversion implies a higher liquidity premium (ie, a higher price
for the more liquid asset) and more price volatility.

1. Introduction

Following Black (1987), a growing literature has argued that taste shocks are im-
portant for our understanding of business cycles and asset prices. For example,
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Smith and Whitelaw (2009) �nd evidence that the largest component of changes in
the equity risk premium is variation in risk aversion, rather that the amount of risk,
and Bekaert, Engstrom and Grenadier (2010) show that stochastic risk aversion that
is not driven by, or perfectly correlated with, the fundamentals of the economy can
simultaneously explain a range of asset pricing phenomena as well as the behavior
of bond and stock markets.

At the same time, a powerful critique of the use of taste shocks in empirical
work notes that taste shocks are typically not directly observable, so that they
become free parameters. As Nason (1997) writes, ‘. . . for taste shocks to have
economically meaningful content, they must be grounded solidly in economic
theory and tied to observable phenomena, which is not always easy.’

In this paper we build on the axiomatically founded model of taste shocks
in Krishna and Sadowski (2014) (henceforth KS), in which those shocks can be
uniquely identi�ed from observable behavior. Based on this identi�cation, KS
provide comparative statics that link more volatile tastes to greater preference for
�exibility, that is, a desire not to commit to future choice ahead of time. We argue
that more volatile tastes should correspond to higher price volatility, and a desire
to maintain �exibility should lead to a higher liquidity premium.

There is indeed strong evidence of a positive correlation between the liquidity
premium and price volatility, for example in Nagel (2012). Existing explanations of
this phenomenon understand the demand for liquidity as a reaction to increased
volatility, for instance via the assumption that risk aversion increases when volatility
is high.1 We show instead that taste shocks, such as varying risk aversion, can
directly drive both, price volatility and the liquidity premium.2

To formally make our argument in a very simple model, we consider a repres-
entative agent, who is modelled as in KS and receives iid shocks to his aversion to
risk in current consumption. We then analyze a small Lucas tree economy with
closed asset markets but partially open goods markets, that is, we enrich the most
basic Lucas tree economy by adding a second productive asset. Output from the

(1) See Honarvar (2016) for an extensive discussion of possible explanations.
(2) It has been argued that demand for liquidity may drive up the equity premium, for example

by Bansal and Coleman (1996). To the extent that this is accurate, taste shocks would also
indirectly drive up the equity premium, and thus provide an additional channel for explaining
it.
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two assets are perfect substitutes for domestic consumption, but only one of them
can be traded on the international market, and so provides more liquidity. Our
main set of results establishes that, indeed, more severe taste shocks correspond
to higher price volatility (which taste shock models are often used to explain),
and they also drive a larger liquidity premium (ie, a higher price of the liquid as
compared to the illiquid output and corresponding asset). This direct link between
price volatility and the liquidity premium could provide discipline for the use of
taste shock models in applied work.

The basic intuition for the relationship between volatility in tastes and in
prices is as follows. The current realized utility (the taste for current consumption)
obviously affects the representative agent’s valuation of his rights to current output.
At the same time, an agent with iid taste shocks values shares of the productive
asset independently of the current realized utility. The price for trading shares of
the asset against rights to current output should be determined by the difference in
these valuations. Hence, more variation in utilities should imply more variation
in prices. This intuition is incomplete, because the equilibrium price in the Lucas
model depends not on the representative agent’s realized utility, but on the realized
marginal utility in the current output of the productive asset (from the �rst order
condition that ensures that at the equilibrium price all output is consumed). We
handle this gap between intuition andmodel with a simple trick:We interpret shares
as probabilistic rights to the entire output, so that utility becomes linear in the share
for any given level of output, and the marginal utility of additional probability of
receiving the current output is precisely the realized utility of current output.3

Now suppose that one productive asset provides less liquid output than
another productive asset, as suggested above. We expect preference for �exibility
to be associated with a tendency to invest less in the asset with illiquid output and
to value that output less. In order to capture this intuition in our simple Lucas
tree economy, consider the following variant: There is a green tree that produces a
perishable green fruit which is only for domestic consumption. There is also a red
tree which produces a perishable red fruit. Both trees produce the same uncertain

(3) Since our focus is the interplay between taste shocks and liquidity concerns, we chose to keep
the model as simple as possible in all other respects. A less immediate, more common way to
ensure that higher utility correspond to a higher price would be an appropriate single crossing
property on the slope of u. The use of the linear structure provided by lotteries in equilibrium
models has its �rst precedent in Prescott and Townsend (1984a, 1984b).
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amount of fruit, and the two fruit are perfect substitutes domestically. The only
difference is that probabilistic rights to some amount of red fruit can be traded
internationally for rights to some other amount of red fruit. Therefore, ownership
rights to red output provide the agent with more �exibility or ‘liquidity’ than
ownership rights to green fruit, and the propensity to invest in the more liquid
asset results in a greater price for the this asset — the liquidity premium — which
is increasing in the desire for �exibility.

The remainder of the paper is structured as follows. Section 2 introduces the
representation as well as the comparative statics from KS. Section 3 analyzes the
standard Lucas tree economy without liquidity concerns and relates volatility in
tastes to volatility in prices. Section 4 adds liquidity concerns to this economy and
presents our main results.

2. Taste Shock representation

Let K be a �nite set of prizes with typical member k. We follow Gul and Pesen-
dorfer (2004) (henceforth GP) in de�ning an in�nite horizon consumption problem
(IHCP) as a collection of lotteries that yield a consumption prize in the present
period and a new in�nite horizon problem starting in the next period. Let Z be the
collection of all IHCPs.4 GP show that Z is a compact metric space, and that each
z 2 Z can be identi�ed with a compact set of probability measures over K � Z.
For the compact metric space K �Z, let P.K �Z/ denote the space of probability
measures endowed with the topology of weak convergence, so that P.K �Z/ is
compact and metrizable. Let F.P.K �Z// denote the space of closed subsets of
P.K�Z/, endowed with theHausdorff metric, such thatF.P.K�Z// is a compact
metric space. It can be shown thatZ is linearly homeomorphic toF

�
P.K�Z/�. We

shall denote this linear homeomorphism as Z ' F
�
P.K �Z/�. Typical elements

x; y; z 2 Z are interpreted asmenus of lotteries over consumption and continuation
problems.

KS provide representations of choice over Z with the understanding that
DM will choose from the IHCP he faces in every subsequent period. Take p; q
to be typical lotteries in P.K � Z/. By the recursive nature of Z, continuation
problems are members of Z. When there is no risk of confusion, we identify prizes

(4) See GP for the recursive construction of Z.
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and continuation problems with degenerate lotteries and lotteries with singleton
menus.

As in KS, for any q� 2 P.K/, let Uq� WD
¶
u 2 RK WPuiq

�
i D 0

·
be the set of

all vN-M utility functions over instantaneous consumption (ie, over K) that are
identi�ed up to a constant.5 (In what follows, for notational simplicity, we will drop
the parameter q� and simply denote the space by U, because q� will be clear from
the context.) The subjective state space relevant for the taste shock representation is
U. To ensure that expected consumption utility under a measure � is well de�ned,
the measure �must be nice, in the sense that the expected utility from each prize is
�nite, ie, �uk WD

R
U
uk d�.u/ is �nite for each k 2 K.

Subjective states u 2 U are naturally interpreted as consumption utilities, and
the two terms are treated as synonyms. Similarly, in what follows, all probability
measures are interpreted as subjective beliefs, and the two terms are used inter-
changeably. For p 2 P.K �Z/, let pk and pz denote the marginal distributions on
K and Z respectively.

De�nition 2.1. Let U be de�ned as above, � a nice probability measure on (the
Borel �-algebra of) U, and ı 2 .0; 1/. We say that% has a taste shock representation,
.�; ı/, if there exists a continuous function V W Z ! R, linear on Z, that satis�es

[2.1] V.x/ D
Z
U

max
p2x

�
u.pk/C ıV .pz/

�
d�.u/

and represents %.

In the representation above, u.pk/ D
P
k02K pk.k

0/u.k0/, and V.pz/ is the
extension of V to P.Z/ by linearity (and continuity), ie V.pz/ D

R
Z
V.z0/ dpz.z0/.

KS provide axioms on a preference relation, %, that are equivalent to the existence
of a taste shock representation, .�; ı/, of%. Moreover, they establish that ı is unique
and � is unique up to scaling (Theorem 1 in KS).

De�nition 2.2. Two probability measures� and�0 on Uare identical up to scaling,
if there is � > 0 such that �.E/ D �0.�E/ for all measurable E � U, where
�E WD f�u W u 2 Eg.
(5) KS take q� to be the uniform lottery overK, in which case

P
i uiq

�
i D

P
i ui D 0. The particular

choice of q� is not important for their results. In particular, in the sequel, we will take K to be
a linearly ordered set, and q� to be the degenerate lottery over the smallest consumption level.
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Preference for �exibility is the preference for non degenerate menus over
singletons. Intuitively, one DM has more preference for �exibility than another
if she has a stronger preference for menus over singletons. To make this precise
requires us to consider the restricted domain L � Z of In�nite Horizon Consump-
tion Streams (IHCSs). This domain consists of lotteries that deliver consumption
for the present period and an IHCS for the next period. It is easy to show that
L is a closed and convex subset of Z. In a manner analogous to the characteriza-
tion of risk aversion where lotteries are compared to certain amounts of money,
characterizing preference for �exibility requires a comparison between IHCPs
and IHCSs. This comparison is meaningful only if the preference restricted to L
is non-trivial, ie, there exist `; `0 2 L such that ` � `0. We refer to this property of
% as Consumption non-triviality. If % has a taste shock representation, KS show
that % satis�es Consumption non-triviality if, and only if, �u ¤ 0.

De�nition 2.3. %� has a greater preference for �exibility than % if

x % ` implies x %� `

for all ` 2 L and x 2 Z.

Note that the comparison in the de�nition requires that% and%� rank IHCSs
the same; that is, ` % `0 if, and only if, ` %� `0.

De�nition 2.4 (Dilation). Let Q.u;D/ be a Markov kernel from U to itself.6
Then Q.u;D/ is a dilation if it is expectation preserving, ie, for each u 2 U,R
U
u0Q.u;du0/ D u. If � and �� are probability measures on U, then �� is a dilation

of � if there exists a dilationQ, such that �� D Q�, ie, ��.du0/ WD R Q.u;du0/ �.du/.
The taste shock representation .�; ı/ only identi�es the measure � up to

scaling. In order to facilitate a comparison of measures, we shall say that a taste
shock representation .�; ı/ is canonical if k�uk2 D 1. Obviously, % admits a ca-
nonical taste shock representation if, and only if, �u ¤ 0 if, and only if, % satis�es
Consumption non-triviality.

(6) That is, Q.u;D/ is the probability of transitioning from the state u to the (measurable) set
D � U. For each u 2 U, Q.u; �/ is a probability measure over U, and for each measurable
D � U, Q.�; U/ is a measurable function from U to R.
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Theorem 1 (Theorem 2 in KS). Let % and %� have canonical taste shock represent-
ations .�; ı/ and .��; ı�/, respectively. Then, the following are equivalent:

(a) %� has a greater preference for �exibility than %.
(b) ı D ı� and �� is a dilation of �.

Observe that if �� is a dilation of �, then both have the same expected utility
(function), ie, �u D ��u.

3. A Lucas Tree Economy

Consider a version of the Lucas tree after Lucas (1978). There is an economy with
a representative agent and one productive asset. The asset produces ! � 0 units
of perishable output, or dividends, in each period. For simplicity, we assume that
output is distributed identically and independently over time, according to the
distribution F.!/ with �nite support. In period 0 there is no production and no
trade.

The agent has z 2 Œ0; 1� shares in the asset, which gives him a proportional
right to the output. Speci�cally, with probability z he gets all the output, and with
complementary probability, he gets none of the output.

There is a market where, once output is known (ie, ! is realized), the agent
can trade the probabilistic right q of getting all of the current output and shares of
the right to future output. This assumption makes preferences linear in shares and
rights to output, which has the following convenient implications.

First, the marginal utility of an extra unit of probability is constant because the
value function is linear in probabilities. This makes themodel very tractable. Second,
if we consider the representative agent to be an aggregation of identical individuals,
and if trade is in probabilities of all the output, then individual preferences can be
aggregated linearly and the representative agent has the same utility over outcomes
as the individuals in the economy, each of which receives a proportional fraction
of the total probability of an outcome. This makes it easy to connect individual
choice data to the value function of the representative agent.

The price of a unit of q is normalized to 1 in each state .!; u/, while the price
of a share is p.!; u/. The timing of events is illustrated in Figure 1.
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share ´
period t

� u

F  !

choose .q; x/ s.t.
q C p.!; u/x  ´C p.!; u/´

q  output
assignment

period
t C 1

share x time

Figure 1: Timeline for the Lucas tree Economy

Consider an agent whose period 0 preferences have a taste shock representa-
tion of choice over IHCPs, where the support of F is in K. The value of holding z
shares in the asset is then

V.z; !; u/ D max
q;x

h
u
�
Œ qI!��C ı“ V.x; Q!; Qu/dF. Q!/d�. Qu/

i
subject to the budget constraint

q C p.!; u/x � z C p.!; u/z
where ŒqI!� is the the lottery that gives ! with probability q and 0 with probability
1 � q. Then, u�Œ qI!�� D qu.!

� C .1 � q/u.0/ D qu.!/ (because u.0/ D 0 for all
u 2 U).

By following the arguments in Lucas, we can show that for each continuous
p.!; u/, there exists a unique continuous, bounded, nonnegative function V.z; !; u/
that satis�es the Bellman equation above, and which is concave in z.

We know that in equilibrium, we must have q D z C p.!; u/z � p.!; u/x, ie
the budget constraint must bind, so that u

�
Œ qI!�� D u.!/�zCp.!; u/z �p.!; u/x�.

In equilibrium, the optimal choice of q and x must satisfy

p.!; u/u.!/ D
“

ıV 0.x; Q!; Qu/dF. Q!/d�. Qu/[FOC]

Thus, in equilibrium, the price p.!; u/ is the marginal rate of transformation
between shares in the productive asset and probabilistic shares of current con-
sumption. Similarly, in equilibrium, the envelope condition is

V 0.z; !; u/ D u.!/�1C p.!; u/�[Env]

Substituting [Env] in [FOC], we �nd that in equilibrium, the pricing function p must
satisfy

p.!; u/u.!/ D ı
“
Qu. Q!/�1C p. Q!; Qu/�dF. Q!/d�. Qu/[3.1]
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Because output and taste shocks are iid, this reduces to

p.!; u/u.!/ D ı

1 � ı
“
Qu. Q!/dF. Q!/d�. Qu/ D ı

1 � ı EŒ Qu. Q!/IF;�� DW ƒ.F;�/

In other words, ƒ is precisely the discounted present value of the asset in utility
terms. Because utility and output processes are iid, ƒ is state-independent. It is
useful to write the price as

p.!; u/ D ı

1 � ı
“ Qu. Q!/

u.!/
dF. Q!/d�. Qu/ D ƒ.F;�/=u.!/[3.2]

as this facilitates a comparison with the usual case where the consumption good is
traded.7

Note that one can just as easily normalize the price of a share to be 1 in each
state .!; u/, in which case the price of a unit of q (the probability for immediate
consumption) becomes  .!; u/ D 1=p.!; u/. In what follows, it is more natural
to work with the price  .!; u/. The solution to the pricing equation can thus be
rewritten as

 .!; u/ D u.!/

ƒ

Suppose, now, that there are only three levels of output, 0, 1=2 and 1. We
are now in a position to relate the distribution of prices to the distribution of
utilities. Consider two exchange economies, A and B , with representative agents
A and B respectively. We assume that both agents have period 0 preferences with
a taste shock representation based on the state space U� � U, where U� D¶
u 2 U W u.0/ D 0; u.1

2
/ 2 Œ1

2
; 1�; u.1/ D 1·. Thus, agents are uncertain about their

risk aversion, which is captured by u.1=2/ being random in Œ1
2
; 1�. We also assume

that%A and%B agree on the intertemporal tradeoff for getting 1 instead of 0, which
implies ıA D ıB .

(7) If the consumption good were to be traded, the price process would be p.!; u/ D
ı
1�ı

’
Qu0.!0/
u0.!/

dF.!0/d�. Qu/, where Qu0 and u0 now represent the marginal utility for the utility
functions Qu and u respectively.
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Thus, for ! 2 f0; 1=2; 1g, prices are given by

 i.0; u/ D 0

 i.1; u/ D 1

ƒi

 i.1=2; u/ D u .1=2/

ƒi

where u .1=2/ 2 Œ1
2
; 1�. In both economies the price of a unit (in probability) of

consumption is constant across states if output is either 0 or 1. Since utilities
are stochastic, we can say something about the distribution of prices in the two
economies for the case where output is ! D 1=2. We let Hi.�/ D P

�
 i.1=2; u/ � �

�
denote this distribution in economy i .

Proposition 3.1. For the two economies described above, statements (a) and (b)
below are equivalent and imply (c).

(a) Agent B has a greater preference for �exibility than agent A.
(b) HA second order stochastically dominates HB .
(c)  A.1; u/ D  B.1; u/ is independent of u.1=2/.

Proof. (a) implies (c): By Theorem 1, it follows that �� is a dilation of �. But this
means that �Au D �Bu, which implies thatƒA D ƒB . This establishes (c) as claimed.

(a) iff (b): Recall that ƒi D
�
ı
1�ı

� R
Œu.1=2/f1=2 C f1�d�i.u/. Then,

E Œ i.1=2; u/IF;�i � D
R
u .1=2/d�i.u/

f1 C f1=2
R
u .1=2/d�i.u/

1 � ı
ı

Hence, E Œ A.1=2; u/IF;�A� D E Œ B.1=2; u/IF;�B � if, and only if,
R
u .1=2/d�A.u/ DR

u .1=2/d�B.u/ if, and only if, ƒA D ƒB D ƒ. It is then immediate thatHA second
order stochastically dominates HB if, and only if, �A second order stochastically
dominates �B . Applying Theorem 1 to the one dimensional case implies (a) iff (b),
which concludes the proof.

The proposition says that in our asset pricing model, where preference for
�exibility stems from uncertainty about future risk aversion, a greater preference
for �exibility corresponds to higher price volatility.
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4. A Lucas Tree Economywith Investment

To study the impact of increased preference for �exibility on the liquidity premium,
we now consider a Lucas tree economy with two trees. The green tree produces
green fruit and is as previously described. The red tree is identical to the green, with
the only difference that red fruit can be traded in an international market (neither
green fruit nor shares in either of the trees can be traded internationally). On those
markets, the probabilistic right to red fruit can be exchanged for probabilistic rights
to a different amount of red fruit at a �xed price, so that the output of the red tree
provides more liquidity than that of the green tree.

The liquidity premium can be measured as the ratio between the prices of
the red and green trees. Proposition 4.1 shows that shares in the red tree are more
expensive than shares in the green tree. An increase in preference for �exibility
keeps the price of green shares �xed, conditional on the realization of u and !,
but increases the price of red shares. At the same time, it increases (in the same
sense as in Section 3 above) the volatility of the price of green shares and, after
renormalizing the price distributions of red shares to have the same mean, also that
of red shares. This is the sense in which an increase in preference for �exibility
leads to an increased liquidity premium, and to increased volatility.

To simplify matters, we assume that the output of each tree is random and
takes values in f0; 1

2
; 1g (as before), but that the output is the same across trees (ie,

the random output is perfectly correlated across trees). We will also assume (for
simplicity) that utility from the consumption of the two fruit is additively separable,
ie, consuming xc units of color c fruit provides utility u.xc/. Moreover, we assume
(as before) that it is only u.1=2/ that is random, taking values in Œ1

2
; 1�, and that in

spite of this randomness the two types of fruit are perfect substitutes for domestic
consumption, ie, utility is always the same for a particular amount of fruit of either
color.

The mechanics of trade in this new environment are crucial. In any period,
after output ! and taste shock u.1=2/ are realized, probabilistic rights to fruit from
both trees can be traded domestically for shares in trees (just as with a single tree).
However, only red fruit can be traded in an international market later in the day,
where probabilistic rights to 1

2
unit of the red fruit can be exchanged for probabilistic

rights to 1 unit of red fruit at a �xed price of � 2 Œ1; 2�, and the agent can participate

11



on either side of this market, depending on the value of !.

The utility from entering the international market with ! units of output of
red fruit and utility function u leads to a �nal (indirect) ‘utility’ of

v.!; u/ D

8̂̂<̂
:̂
0 ! D 0
maxŒu.1=2/; 1

�
u.1/� ! D 1

2

maxŒ�u.1=2/; u .1/� ! D 1

Because � > 1, v cannot be directly interpreted as an expected utility. However,
as argued in Section 3, because the representative agent may be thought of as
an aggregation of N identical individuals who share the probabilistic rights to
output proportionally, a large enoughN will ensure that the probability with which
each individual receives output is well de�ned. In particular, because the Bellman
equation is linear in the probabilities, a very convenient feature of aggregating
individuals probabilistically is that the representative agent has the same value
function as each individual, up to a scaling which does not affect the solution.
For ease of notation, we therefore allow ‘probabilities’ to exceed 1 in the Bellman
equation below.

To set up the value function, let z D .zg ; zr/ denote shares in the green and
red trees respectively, ! the current output (in both trees), and u the current taste
shock (only u.1=2/ is uncertain). Let pc denote the price of a share in a tree of color
c, and let ar denote the price of red fruit (where all prices are functions of .!; u/).
Recall that the price of green fruit is normalized to 1. Standard arguments lead us
to the Bellman equation

V.z; !; u/ D max
q;x

�
qgu.!/C qrv.!; u/C ı

“
V.x; !0; u0/dF.!0/d�.u0/

�
[VF2]

subject to the budget constraint

qg C arqr C prxr C pgxg � zg C arzr C pgzg C przr[4.1]

where q D .qg ; qr/ and x D .xg ; xr/ denote the vectors of shares in fruit and trees
respectively.

Notice the extra qrv.!; u/ term in [VF2], which denotes the extra (�ow) utility
from being able to trade red fruit in the international market. This is the only
difference from the one tree case.
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Clearly, in equilibrium, the budget constraint [4.1] will bind with equality.
Substituting for qg in [VF2], we �nd the �rst order condition for qr to be

ar D v.!; u/

u.!/
[FOC-qr ]

The �rst order condition for shares xc in a tree of color c is

pcu.!/ D ı
“

@cV.x; !0; u0/dF.!0/d�.u0/[FOC-xc]

where @cV.x; !; u/ denotes @V=@xc for c D g; r . Similarly, the envelope conditions
are

@gV.z; !; u/ D u.!/.1C pg/[Env-zg ]

@rV.z; !; u/ D u.!/.ar C pr/[Env-zr ]

Combining the �rst order conditions for xc and the envelope conditions, we
�nd the pricing equation for pg to be

pg.!; u/u.!/ D ı
“

u0.!0/
�
1C pg.!0; u0/

�
dF.!0/d�.u0/

which leads to

pg.!; u/u.!/ D ƒg.F; �/ WD ı

1 � ı EŒu.!/IF;��[4.2]

The pricing equation for pr can be written as

pr.!; u/u.!/ D ı
“

u0.!0/
�
ar.!

0; u0/C pr.!0; u0/
�
dF.!0/d�.u0/

which leads to

pr.!; u/u.!/ D ƒr.F; �/ WD ı

1 � ı EŒv.!; u/IF;��[4.3]

To study the effect of greater preference for �exibility, consider two economies
A and B , with representative agents A and B , where B has a greater preference for
�exibility than A. As in Section 3, we now appropriately de�ne inverse asset prices
 c;j for color c 2 fg; rg in economy j 2 fA;Bg, depending on the level of output
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! and utility u. In particular, we compare the distributions Hc;j .t/ WD Pj . c;j � t /
across the two economies for each c 2 fg; rg in terms of second order stochastic
dominance.

First for the green asset, which cannot be traded on international markets, we
can de�ne, exactly as before,

 g.!; u/ D 1

pg.!; u/
D u.!/

ƒg
[4.4]

Notice that the indirect utility from consuming red fruit is v.1=2; u/ D
maxŒu.1=2/; 1=�� when ! D 1

2
(recall that u .1/ D 1 with certainty). Thus, the

distribution of future indirect utilities is truncated, and a mean preserving spread
of u.1=2/ will no longer leave the mean of the indirect utility v.!; u/ unchanged.

The price, pr.!; u/, of the red asset as noted in [4.3], depends on the distribution
of expected indirect utility. As a consequence, the price distributions for ! D 1

2

in the two economies generally have different means. We will compare relative
volatility of the price as a fraction of the respective means, that is, we rescale the
price distributions, so that for ! D 1

2
, they have the same mean, and a comparison

in terms of second order dominance now becomes possible. Towards that end, let

 r;j .!; u/ D 1

pr;j

1

ƒr;�j
D u.!/

ƒr;Aƒr;B
[4.5]

and note that for ! D 1
2
the mean of this random variable isZ
 r;j .

1
2
; u0/d�.u0/ D

R
u0.1

2
/d�j .u0/

ƒr;Aƒr;B

which is indeed independent of j 2 fA;Bg because �B is a dilation (ie, mean
preserving spread) of �A, so that both have the same mean.

For c 2 fg; rg we can now compare the cummulative distribution Hc;j .t/ WD
Pj . c;j

�
1
2
; u
� � t / for j D A to that for j D B .

Proposition 4.1. For the two economies described above, statements (a) and (b)
below are equivalent and imply (c).

(a) Agent B has a greater preference for �exibility than agent A.
(b) Hc;A second order stochastically dominates Hc;B for c 2 fg; rg.
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(c)  g;A.!; u/ D  g;B.!; u/ and
pr;B.!; u/

pr;A.!; u/
D ƒr;B

ƒr;A
> 1 D  r;A.!; u/

 r;B.!; u/

Thus, as in the single tree case in Section 3, greater preference for �exibility
corresponds to greater dispersion of (relative) price and greater volatility (in the
sense of second order stochastic dominance). For green trees, this is the same result
as in Proposition 3.1. For red trees the claim is more involved.

Proof of Proposition 4.1. As noted above, that (a) implies (c) is exactly as in the
proof of Proposition 3.1, as is the claim of that (a) and (b) are equivalent for green
trees. That  c;A.!; u/ D  c;B.!; u/ for c D g; r follows immediately from equations
[4.4] and [4.5] respectively. In particular, conditional on the realization of the taste
shock and endowment, the (appropriately scaled) price is the same in each economy.

To see that pr;A=pr;B D ƒr;A=ƒr;B < 1, notice that the equality follows immedi-
ately from [4.3], while the inequality amounts to EŒv.!; u/IF;�A� � EŒv.!; u/IF;�B �,
which is true because �B is a dilation of �A and v is convex in u.

Part (c) establishes that for every realization of u and!, pr;B.!; u/ > pr;A.!; u/,
ie, the red tree is more expensive in economy B than A (recall that the price pc;j is
the ‘raw’ price, not the scaled version). Because rights to red fruit provide more
liquidity than rights to green fruit (they can be traded on international markets)
this ratio greater than unity can be understood as a liquidity premium.

The greater value for liquidity in economy B is also re�ected in the expected
price ratio between red and green fruit in each of the economies. The relative price
of rights to the red compared to the green fruit is simply ar;j in economy j 2 fA;Bg.

Proposition 4.2. The price ar;j of red fruit relative to green fruit is weakly bigger
than 1 for all u and !. Moreover, for ! ¤ 0 greater preference for �exibility in
economy B than in economy A means that, on average, the price of red fruit is
higher in economy B than in A,Z

ar;A.!; u/d�A.u/ �
Z
ar;B.!; u/d�B.u/

for ! 2 f1=2; 1g.
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Proof. As seen in [FOC-qr ], ar;j .!; u/ D v.!; u/=u.!/. As noted above, for ! > 0,
v.!; u/ � u.!/ and v.!; u/ is convex in u.1=2/. Notice that

ar;j .1=2; u/ D maxŒu.1=2/; u.1/=��
u.1=2/

D maxŒ1; u.1/=�u.1=2/�

But the function t 7! maxŒ1; 1=�t � is the maximum of two convex functions, and
hence is convex. This implies (recall that u.1/ D 1) ar;j .1=2; u/ is convex in u. ThatR
ar;A.!; u/d�A.u/ �

R
ar;B.!; u/d�B.u/ now follows immediately from the fact

that �B is a dilation (mean preserving spread) of �A.

In words, if agent B has more severe taste shocks, which is equivalent by
Theorem 1 to a greater preference for �exibility, then by Proposition 4.1 there is
more price volatility in economy B and the liquidity premium for red trees is larger
in economy B . By Proposition 4.2, in both economies there is a non-trivial liquidity
premium (whenever u.1=2/ > 1=�) for the more liquid red fruit over green fruit,
and this premium is higher in economy B. The two propositions illustrate how
taste shocks drive not only the price volatility they are often employed to explain,
but also a liquidity premium.
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