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Abstract
This paper revisits Williams’ (2011) (henceforth PPI’s) continuous-time principal-

agent model of optimal dynamic insurance with persistent private information. We identify
three independent issues in PPI that implicate its characterizations of incentive compatible
and optimal contracts: (i) the agent cannot over-report increments of his type, a constraint
that does not follow from the common assumption that the agent cannot over-report his
type; (ii) the agent’s feasible set of reporting strategies does not include standard “no Ponzi”
constraints, without which PPI’s main analysis of infinite-horizon incentive compatibility
is incomplete; and (iii) most importantly, in PPI’s main application, which concerns
hidden endowments, the contract identified as optimal is generically strictly suboptimal.
For this application, we address the three issues by analyzing a class of “self-insurance
contracts” that can be implemented as consumption-saving problems for the agent, and
which includes the contract derived in PPI as a particular case. We characterize the optimal
self-insurance contract and show that, generically, it strictly dominates PPI’s. Our analysis
does not support PPI’s main economic finding that immiseration generally fails or its
attribution of this failure to continuous time and persistence.

1. Introduction

In an influential paper, Williams (2011) (henceforth PPI) introduces a continuous-time
framework to study optimal contracts in dynamic principal-agent settings where the
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agent’s private information is persistent. In the present paper, we identify and address
three independent issues in PPI’s model formulation and analysis, elucidate their con-
sequences for PPI’s conclusions, and discuss implications for the broader literature. In
doing so, we develop some new results and methods that may be of independent interest
and highlight some open questions that we hope will stimulate future work.

Overview of PPI. PPI aims to make two methodological contributions and one eco-
nomically substantive contribution (see pp. 1233–35).1

The methodological contributions are, first, to formulate a first-order approach to
incentive compatibility (IC) in contracting models with a persistent private state (§§2–3)
and, second, to provide a set of sufficient conditions under which that approach is valid
(§4). Many of these methods have been fruitfully applied in the subsequent literature to
shed light on new and difficult problems in contract theory.2

For the substantive contribution, PPI applies these techniques to study optimal con-
tracts, formulating the principal’s optimization problem in an abstract setting (§5) and
explicitly solving for optimal contracts in a canonical class of dynamic insurance prob-
lems in which the agent’s private information concerns his endowment (§§6–7) or taste
shocks (§8). PPI’s analysis appears to overturn common wisdom about the qualitative
features of dynamic insurance contracts, which are the subject of longstanding literatures
in both micro- and macroeconomic theory.3 Specifically, in both applications, PPI’s key
finding is that the optimal contract sends the agent to bliss: the agent’s consumption and
utility converge almost surely to their upper bounds. This finding goes against the classic
literature’s hallmark result that optimal insurance contracts generate immiseration: the
agent’s consumption and utility converge almost surely to their lower bounds. As the
classic literature focuses on discrete-time models with i.i.d. private information, PPI
attributes this discrepancy to fundamental differences in the agent’s IC constraints driven
by continuous time and persistence (e.g., see p. 1235 and pp. 1256–58).

Three Issues with PPI. PPI’s model formulation and analysis contain three issues that
implicate most aspects of the paper’s latter two contributions (sufficient conditions for
IC and analysis of optimal contracts).4 We summarize these issues below. We list them

1Throughout, we use page numbers and the § symbol to refer, respectively, to pages and sections in
PPI. We reserve the term “section” for reference to sections in the present paper.

2For instance, Chen (2021), Cisternas (2017), DeMarzo and Sannikov (2016), Prat and Jovanovic
(2014), Ramos and Sadzik (2019), and Sannikov (2014) adopt versions of PPI’s first-order approach and
aspects of its proof strategy for establishing full incentive compatibility.

3See Green (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992), and Phelan (1998) for
classic contributions, Kocherlakota (2010) and Golosov, Tsyvinski, and Werquin (2016) for surveys, and
Bloedel, Krishna, and Leukhina (2021) for a recent contribution and additional references.

4These issues do not have any notable implications for PPI’s first contribution (the first-order approach
to IC). Meanwhile, PPI’s economic conclusions about the failure of immiseration and the associated roles
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in their logically most linear order, but note that the third issue is the most substantive.
1. Sign restrictions on misreports: PPI’s description of the model includes the standard

assumption that the agent can only under-report his type. However, PPI’s actual
analysis uses the significantly stronger restriction that the agent can only under-
report each increment of his type, implying that the agent cannot correct for any
past under-reports.5 This restriction, which does not follow from the initial under-
reporting assumption (Observation 1), is conceptually problematic and has no known
analogues in the literature. Without it, however, the class of IC contracts shrinks and
the analysis of IC requires different arguments. In particular, the proof of PPI’s general
sufficient conditions for IC (Theorem 4.1, p. 1247 and §A.2) and the verification of
IC in PPI’s main application (§6 and §A.3.1) rely on this stronger restriction.

2. Tail restrictions on misreports: PPI initially formulates the agent’s reporting problem
in a finite-horizon setting (§§2–4). However, the entire formulation and analysis
of optimal contracts takes place in an infinite-horizon setting (§§5–8), informally
motivated as a limit of finite-horizonmodels. In this infinite-horizon setting, PPI omits
standard “no Ponzi” restrictions on the asymptotic growth rate of the agent’s feasible
reporting strategies and does not check whether the agent’s value function satisfies
the appropriate transversality condition. PPI’s main analysis of infinite-horizon IC
is incomplete as a result of these omissions. In particular, the contract identified
as optimal in PPI’s main application (defined below as Contract PPI) generically
violates IC under PPI’s assumptions (Observation 2).

3. Generic suboptimality of the contract identified in PPI: PPI’s main application
concerns a risk-sharing model in which the agent has a privately observed endowment
(§§6–7).6 Due to an incorrect numerical characterization of the optimal contract’s
initial condition (see Appendix A for details), the contract that PPI identifies as
optimal (Contract PPI) is, in fact, strictly suboptimal in the generic case that the
agent’s endowment has non-zero mean-reversion (Observation 3). Consequently,
PPI’s main economic conclusions about the failure of immiseration and the associated
roles of continuous time and persistence do not follow from that paper’s analysis.
Closely related results in the recent literature further suggest that these conclusions
are, in fact, incorrect (see Section 7.2).

These three issues are logically independent of each other: even if any two are addressed,

of continuous-time and persistence, which we show are not warranted, have been informally echoed in the
literature (e.g., Zhang (2009, pp. 637,652); Kapička (2013, p. 1029); Prat and Jovanovic (2014, p. 885)).

5In particular, this restriction prevents the agent from engaging in “one-shot deviations” that consist
of under-reporting his type for a small amount of time and truthfully reporting his type thereafter.

6PPI’s other application (to a taste shock model in §8) considers only the special case in which the
agent’s type has exactly zero mean-reversion and is essentially equivalent (modulo a change of variables)
to the analogous special case of the main hidden endowment application. Thus, our analysis effectively
covers both of PPI’s applications.
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the third remains problematic. They are also essentially unrelated to PPI’s continuous-
time formulation: the same observations apply almost verbatim to the natural discrete-
time versions of PPI’s model and Contract PPI. The generic suboptimality of Contract
PPI—which we view as the most important and economically substantive issue—remains
an issue regardless of the sign or tail restrictions that one imposes on the agent’s feasible
set, and independently of whether one formulates the model in continuous or discrete
time. We study the first two issues primarily to emphasize this point.

Addressing the Issues. After recalling PPI’s general model (Section 2) and main
application (Section 3), we describe the three issues summarized above (Section 4).
These issues implicate the general analysis in PPI. For our main analysis (Sections 5
and 6), we then turn our attention to PPI’s primary application, in which the agent has a
privately observed endowment that follows an OU process (i.e., continuous-time version
of a Gaussian AR(1) process) and CARA utility over consumption.

In this setting, we address the first two issues by (i) allowing for a range of sign
restrictions on the agent’s feasible misreports (including arbitrary over- and under-
reporting) and (ii) imposing a standard “no Ponzi” constraint on the agent that limits
the asymptotic growth rate of his misreports. This allows us to demonstrate that (a)
under our “no Ponzi” constraint, Contract PPI is IC given any sign restrictions on the
agent’s misreports, and (b) our “no Ponzi” constraint on the agent is a minimal sufficient
condition for Contract PPI to be IC. We then elucidate the third issue by showing that
Contract PPI is strictly suboptimal in the generic case that the agent’s endowment has
non-zero mean-reversion. We approach the suboptimality issue in two steps:
1. We first observe that the agent’s consumption under Contract PPI is characterized

by a standard Euler equation, and therefore coincides with the solution to a standard
consumption-saving problem for the agent, in which there is no principal and the
agent simply self-insures by investing in a risk-free bond at the ambient market rate
(which is equal to the discount rate). Consequently, PPI’s main economic results,
which concern the long-run properties and comparative statics of Contract PPI, can be
interpreted as standard results about precautionary savings in self-insurance problems.
Notably, the classic contracting literature has found that optimal contracts typically
do not coincide with solutions to self-insurance problems (e.g., Allen (1985); Cole
and Kocherlakota (2001)).

2. We then introduce a new class of Self-Insurance Contracts (SI Contracts) defined
in terms of an indirect implementation in which the principal acts as the agent’s
“bank.”7 Specifically, the principal provides the agent with some initial wealth and

7As we discuss in Section 5.1, versions of our solution to the agent’s self-insurance problem, which
in our setting arises as his best-response within an SI Contract, appear in the self-insurance literature
(Caballero 1990; Wang 2003, 2006). To the best of our knowledge, neither our definition nor our analysis
of optimality for SI Contracts (Section 5.2–5.4) has close analogues in that literature.
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then allows the agent to self-insure at a risk-free interest rate equal to the sum of
the ambient market rate and a savings tax that the principal charges the agent. As
suggested by Step 1, Contract PPI is the specific SI Contract with zero taxes. However,
whenever the agent’s endowment has non-zero mean-reversion, we show that the
optimal SI Contract imposes strictly positive taxes. We interpret this result in terms
of the agent’s precautionary savings behavior.

We also derive some additional properties of SI Contracts that may be of independent
interest beyond this paper.

In Section 6, we provide two proofs that all SI Contracts, including Contract PPI,
are IC when re-formulated as direct mechanisms: one based on an “indirect” revelation
principle argument and the other based on a “direct” analysis of the agent’s reporting
problem.8 Each approach is independently instructive, requires different analysis than
that in PPI, reveals similarities between IC in continuous- and discrete-time models, and
may be useful for analyzing IC in other continuous-time contracting models.

(Fully) Optimal Contracts. Our analysis of SI Contracts raises two questions:
1. Are there conditions under which Contract PPI is, in fact, optimal? We provide two

positive answers. First, it is optimal in an alternative model in which the agent can
covertly save and borrow at the market rate (“hidden savings”), linking PPI’s analysis
to classic discrete-time studies of optimal hidden savings contracts (Allen 1985; Cole
and Kocherlakota 2001). Second, it is optimal in the non-generic case of PPI’s original
model in which the agent’s endowment has exactly zero mean-reversion (“permanent
shocks”), confirming PPI’s finding in this special case. We thus obtain optimality
foundations for Contract PPI, albeit in distinct and rather specific environments.9

2. Is the optimal SI Contract “fully” optimal (i.e., among all IC contracts)?We offer
a negative answer: under regularity conditions, the fully optimal contract strictly
dominates the optimal SI Contract whenever the agent’s endowment has non-zero
mean-reversion (“transient shocks”). While our analysis of SI Contracts has some im-
plications for the fully optimal contract under transient shocks, a full characterization
of the latter contract remains an important open problem.

We summarize these analyses in Sections 5.4 and 7 (details are in Appendices H and J).

8That is, for the “indirect” approach, we construct an explicit mapping between consumption-saving
strategies in the indirect mechanism and reporting strategies in the direct mechanism. One implication of
this mapping is that our “no Ponzi” restriction on reporting strategies is equivalent to the standard no
Ponzi condition on savings in the agent’s self-insurance problem.

9The assumption of hidden savings, while realistic in some settings, corresponds to a fundamentally
different model than that studied in PPI and much of the social insurance literature, which focuses on the
implications of the agent’s private information in isolation. The assumption of permanent endowment
shocks is knife-edge and constitutes a fundamental departure from the classic literature with i.i.d. types:
as we discuss in Section 7, it leads to qualitatively different tradeoffs for the principal than arise under
type processes with even arbitrarily slow mean-reversion.
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Broader Implications. In Section 7, we discuss implications of our analysis for the
interpretation of PPI’s results and for the broader literature.
• Immiseration and Persistence: PPI’s main economic conclusion that immiseration
fails under persistent private information is based on the analysis of Contract PPI.
We find that this conclusion is warranted only in the non-generic case of permanent
shocks; it is driven by the absence of mean-reversion in the agent’s type process—
rather than persistence per se or continuous time, as asserted in PPI. We further argue
that immiseration should, in fact, be expected to hold under the optimal contract in
PPI’s model when shocks are transient.

• Continuous vs. Discrete Time: A central claim in PPI is that its results differ from
those in the prior discrete-time literature because IC constraints are qualitatively
different in discrete- and continuous-time models. Our analysis casts doubt on this
claim: our SI Contracts (including Contract PPI) have precise discrete-time analogues,
and our analysis of IC reveals fundamental parallels between incentive constraints in
continuous- and discrete-time settings.

2. Model

Section 2.1 introduces PPI’s general model. Section 2.2 introduces various possible
restrictions on the agent’s feasible set of reporting strategies.

2.1. Environment

Time is continuous and runs over an infinite horizon. At t “ 0, a risk-neutral principal
(she) offers an insurance contract to a risk-averse agent (he). Once the contract is signed,
neither party may renege at a later date.

Type Process. At each instant t, the agent privately observes his type, bt P R. The
agent’s type process b “ pbtqtě0 evolves according to the equation

dbt “ pµ´ λbtq dt` σ dWt,[2.1]

where σ ą 0 and W “ pWtqtě0 is a standard Brownian motion. The initial condition
b0 P R is common knowledge. The parameter λ ě 0 specifies the rate of mean reversion.
When λ “ 0, b is a Brownian motion with constant drift. We refer to this as the permanent
shock case because the time-t shock (the Brownian increment dWt) has a non-vanishing
additive effect on bT for all T ą t. When λ ą 0, b is an Ornstein-Uhlenbeck (OU) process.
We refer to this as the transient shock case because the time-t shock has a vanishing
effect on bT as T Ñ 8. Note that smaller values of λ correspond to greater persistence.10

10Given any realization of bt and time T ą t, the solution to [2.1] is bT “ µ{λ` pbt ´ µ{λqe
´λpT´tq `

e´λpT´tq
şT

t
σeλτ dWτ . It follows that dbT

dbt
“ e´λpT´tq. In the language of Pavan, Segal, and Toikka (2014),
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We let P denote the probability measure over paths of b.11

Reporting Strategies. At each instant t, the agent reports a type yt P R. The process
y “ pytqtě0 is the agent’s reporting strategy, and is assumed to be adapted to the filtration
of process b (henceforth, b-adapted).12 The process m “ pmtqtě0 where mt :“ yt ´ bt
is the agent’s misreporting strategy, and is also b-adapted. Thus, mt ą 0 corresponds
to over-reporting one’s type while mt ă 0 corresponds to under-reporting it. Clearly,
each reporting strategy y uniquely defines a corresponding misreporting strategy m
and vice versa. However, it is useful to distinguish between these objects because the
principal only observes the realized sample path of y, while the agent observes the
realized sample path of b and his own misreporting strategy. Every misreporting strategy
m induces a probability measure Pm over paths of y. We let y˚ :“ b and m˚ :“ 0 denote
the truthful reporting and misreporting strategies, respectively, and let P˚ :“ Pm˚ denote
the corresponding measure over report paths. Note that while P˚ coincides with P, they
are measures over paths of different processes (y and b, respectively).

As in PPI, we assume that the agent’s misreports have absolutely continuous
sample paths, i.e., there exists a process ∆ “ p∆tqtě0 such thatmt ”

şt

0
∆s ds (where “””

denotes that P-a.s., the processes are equal for almost all t ě 0). Thus, the agent’s report
evolves as dyt “ dbt `∆t dt, where the drift adjustment ∆t corresponds to misreporting
the increment dbt. Let M denote the space of such misreporting strategies.

Contracts. A contract is a continuous y-adapted process s “ pstqtě0 that specifies
transfers (of the consumption good) from the principal to the agent as a function of the
history of reports.

Agent’s Incentives. The agent’s type determines his preference over consumption: if
the agent’s current type is bt and he receives transfer st P R from the principal, his flow
utility is vpst, btq. The agent may be restricted to a subset of misreporting strategies, his
feasible set F ĎM, that contains the truthful strategy m˚. Given the agent’s feasible set

e´λpT´tq is the impulse response of bT to bt. Smaller values of λ correspond to larger impulse responses;
when λ “ 0, the impulse responses are identically 1.

11Formally, this requires specifying the measure space of sample paths. Following PPI (p. 1239), we use
the space of continuous pathsCpr0,8qq endowed with the standard Borel sigma-algebra (cf. Appendix C).

12That is, yt is measurable with respect to the sigma-algebra generated by the paths pbτ qτPr0,ts. PPI
further assumes that y is predictable with respect to the filtration generated by b (i.e., is b-adapted and,
moreover, yt does not depend on the contemporaneous type bt). However, this distinction is inconsequential
under PPI’s assumption, which we adopt below, that the misreporting process m :“ y ´ b has absolutely
continuous sample paths. (When y has continuous paths, it is adapted if and only if it is predictable.)
An analogous qualifier is relevant when we define contracts below as being y-adapted, rather than y-
predictable. We assume mere adaptedness here because it is the appropriate assumption when, in Section 6,
we consider extending the agent’s strategy space to allow for discontinuous “jump” reports (see Section 6,
Section 7.3, and Appendix I for further discussion).
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F , a contract is said to be F -incentive compatible (F -IC) if it satisfies13

m˚
P arg max

mPF
Em0

„
ż 8

0

e´ρtvpst, btq dt



,[IC]

where ρ ą 0 is the agent’s discount rate.

Principal’s Problem. The principal also has discount rate ρ ą 0. A standard interpre-
tation, which will be important later, is that ρ represents the interest rate at which the
principal finances the contract on a risk-free bond market. Given the agent’s feasible
set F ĎM, the principal chooses a contract to minimize the expected lifetime cost of
transfers to the agent (under truthful reporting)

E˚0

„
ż 8

0

e´ρtst dt



[2.2]

subject to the contract (i) being F -IC and (ii) satisfying the promise keeping constraint
q0 ď E˚0

“ş8

0
e´ρtvpst, btq dt

‰

, where the initial promised utility q0 ă 0 is a given parameter.
An F -optimal (full-commitment) contract is any contract that minimizes the principal’s
costs subject to these two constraints.14

Remark 2.1. The model described above is identical to the model introduced in PPI,
except for two distinctions:
(i) We define the incentive compatibility and optimality of a contract as a function of

the agent’s feasible set F Ď M. This allows us to be more explicit than PPI about
which restrictions are being imposed on the agent’s strategy space (see Section 2.2
below) and their implications for the class of IC contracts (Section 4).

(ii) We formulate the model directly over an infinite horizon. Although PPI initially formu-
lates a finite-horizon version of the model (§2) and analyzes incentive compatibility
in that context (§§3–4), the entire analysis of optimal contracts, both in an abstract
setting (§5) and in applications (§§6–8), takes place in a informal infinite-horizon
limit of that initial finite-horizon model (see Footnote 23 below). We proceed directly
to the infinite-horizon formulation because (a) following PPI, it is the relevant setting
for studying optimal contracts, and (b) PPI’s infinite-horizon model as written is not
fully specified because it relies simultaneously on a finite-horizon formulation of
the agent’s reporting problem and an infinite-horizon formulation of the principal’s
contracting problem (see Section 4.2 below).

13We let Emt denote the expectation with respect to the agent’s time-t information under misreporting
strategy m PM. We also let E˚t :“ Em

˚

t for brevity, as in [2.2] below.
14As usual, we also implicitly restrict attention to the class of contracts for which [2.2] is well-defined.
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2.2. Restrictions on Reporting Strategies

We introduce various restrictions on the agent’s feasible set F , some of which come from
PPI and some of which are new. Doing so allows us to clarify the restrictions imposed in
PPI, and to modify these restrictions after showing that some of them are problematic.
Throughout, it will be useful to keep in mind the following elementary fact:

Fact 1. If the feasible sets F, F 1 ĎM satisfy F Ď F 1, then:
(i) Every F 1-IC contract is also F -IC, i.e., the set of F 1-IC contracts is smaller than the

set of F -IC contracts.
(ii) The optimal F 1-IC contract has a weakly higher cost to the principal (i.e., is no better)

than the optimal F -IC contract.

Sign Restrictions. A class of restrictions considered in PPI concerns the sign of the
agent’s misreports. One such restriction is that the agent can only under-report his type,
so that his misreporting process is everywhere non-positive. For reasons discussed in
Section 4.1 below, we dub this restriction No Hidden Borrowing (NHB) and denote the
set of misreporting strategies consistent with NHB by

[NHB] M´ :“ tm PM : m ď 0u .

A stronger restriction is that the agent can only under-report the increments of his type, so
that the ∆ process is everywhere non-positive. Because this implies that the misreporting
process has non-increasing sample paths, we refer to it as Increasing Magnitude of Lies
(IML) and denote the set of misreporting strategies consistent with IML by

[IML] Mď :“ tm PM : ∆ ď 0u .

As explained below in Section 4.1, PPI motivates NHB as part of the model formulation
but relies on IML for the formal analysis.

Absolute Continuity of Measures. Another class of restrictions considered in PPI
concerns the kinds of misreporting strategies that are (un)detectable by the principal.

Recall that each m P M formally induces a measure Pm over sample paths of y,
with P˚ :“ Pm˚ the measure induced by truthtelling. PPI assumes, as part of the finite-
horizon model formulation (pp. 1240–42), that the agent can only misreport in ways
that generate an absolutely continuous (AC) change-of-measure: given the finite horizon
r0, T s and letting PmT denote the marginal of Pm over r0, T s-truncated sample paths, PPI
assumes that m is feasible only if PmT is AC with respect to P˚T (denoted PmT ! P˚T ).15

15To be precise, PPI assumes that PmT ! P0
T , where P0 is the measure induced by the non-truthful

strategy under which y is a driftless Brownian motion. For any finite T , this is equivalent to requiring
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Economically, this restriction is meant to capture the fact that, in continuous time,
there are certain kinds of misreports that the principal can instantaneously detect (with
probability one), and therefore deter at zero expected cost by “shooting the agent” upon
detection (cf. PPI p. 1240).16 Technically, it facilitates PPI’s use of Girsanov’s Theorem
to reformulate the agent’s reporting problem as one of choosing a “density process” for
the change-of-measure (§2.3).

With an infinite horizon, however, there are two standard but distinct notions of
AC changes-of-measure. Specifically:
• Pm is locally AC with respect to P˚ if the finite-horizon marginals satisfy Pmt ! P˚t
for all t ą 0. We let

[LAC] MLAC :“ tm PM : Pmt ! P
˚
t for all t ą 0u

denote the class of strategies inducing locally AC changes-of-measure. Intuitively,
no m PMLAC is detectable by the principal in finite time.

• Pm is globally AC with respect to P˚ if Pm ! P˚, i.e., the measures over entire
infinite-horizon paths are AC. We let

[GAC] MGAC :“ tm PM : Pm ! P˚u

denote the class of strategies inducing globally AC changes-of-measure. Intuitively,
no m P MGAC is detectable even in infinite time (i.e., “at t “ 8”, after the entire
sample path has been observed).

It is well known that GAC is strictly more demanding than LAC because the former
imposes fairly strong restrictions on the asymptotic behavior of the m process as tÑ 8

(see Appendix C). As we discuss in Section 4.2, PPI does not explicitly specify which
notion is meant to be imposed in the infinite-horizon model.

No Ponzi Constraints. Our analysis will illustrate the importance of imposing tail
restrictions that constrain the asymptotic growth rate of the agent’s misreports (see

that PmT ! P˚T . However, in the infinite-horizon model, requiring that Pm ! P0 would imply that truthful
reporting is infeasible, which would be inappropriate (cf. [GAC] below).

16The AC change-of-measure assumption is stronger than this intuition suggests. Formally, suppose the
principal fixes a P˚-null event N Ă Cr0,8q of “detectable lies” (e.g., sample paths that have different
quadratic variation than b) and “shoots” the agent if and only if he reports a path inN . While this constrains
the agent to strategies m for which PmpNq “ 0, he could still set PmpN 1q ą 0 for a different P˚-null set
N 1. For instance, he could pick any path ŷ P Cr0,8qzN and always report it; the principal, who only
observes one path of reports, would be unable to distinguish this strategy from truthtelling conditional
on ŷ being the realized path of b. Nonetheless, the AC change-of-measure assumption rules out such
strategies by preventing the agent from placing positive weight on any P˚-null event. Which misreports
should be deemed detectable is a subtle open question for the continuous-time contracting literature (cf.
Acciaio, Crowell, and Cvitanić (2022)).
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Section 4.2). However, we find it convenient to impose tail restrictions that are weaker—
and admit an arguably more natural economic interpretation—than those implied by
GAC, and that, unlike GAC, can be formulated as pathwise constraints. To this end, we
say that misreporting strategy m satisfies the no Ponzi condition (at rate r ą 0) if

lim
tÑ8

e´rt
ż t

0

mτdτ ě 0 P-a.s.[NP-m]

Notice that [NP-m] constrains the asymptotic growth rate of the agent’s under-reports
only by ruling out sample paths along which mt diverges to ´8 too quickly relative
to the rate r. As formalized in Section 6, [NP-m] is analogous to the standard no Ponzi
constraint limtÑ8 e

´rtAt ě 0 that arises in a consumption-saving problem with “interest
rate” r ą 0 and “asset process” At ”

şt

0
mτdτ . We denote the set of misreporting

strategies consistent with this no Ponzi constraint by

[2.3] Mr :“ tm PM : [NP-m] holds for rate ru .

Clearly, [NP-m] is strictly more permissive for higher rates: Mr ĹMr1 whenever r ă r1.
Moreover, GAC implies that [NP-m] holds for all rates r ą 0 (see Appendix C).

Notation. We defineMr
´ :“MrXM´ andMr

ď :“MrXMď, with a similar convention
for MLAC

´ , MLAC
ď , and so on. We also adopt the convention that “NHB” stands for “the

assumption that the agent’s feasible set is F “M´,” and so on.

3. Hidden Endowment Application

In this section, we recall the setting of PPI’s main application and the contract derived
as optimal therein (§§6–7 and §A.3).

Setting. The agent’s time-t type bt now corresponds to his endowment at that time. The
agent’s utility of consumption at time t is given by vpst, btq “ upst ` btq, where u takes
the CARA form upcq “ ´e´θc for some θ ą 0. Given this structure, it is convenient to
re-express contractual variables as follows. Define the agent’s y-adapted (recommended)
consumption process c “ pctqtě0 by ct :“ st ` yt and his y-adapted (recommended)
flow utility process u “ putqtě0 by ut :“ upctq. These are the consumption and flow
utility processes intended by the contract, presuming that the agent is truthful. Thus,
the agent’s actual consumption is given by the b-adapted process cm “ pcmt qtě0 where
cmt :“ ct ´mt “ st ` bt. In this context, we can interpretmt as the amount that the agent
“diverts” for private consumption.

Contract PPI. To describe the contract identified as optimal in PPI—hereafter Con-
tract PPI—we introduce three processes. First, define the y-adapted process W y “

pW y
t qtě0 by σW

y
t :“ yt ´ b0 ´

şt

0
pµ´ λyτ q dτ . That is,W y is the shock process that the
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principal would infer the agent faced if (a) the principal were to assume that the agent is
truthful and (b) the agent actually follows strategy y. Note thatW y coincides with the
standard Brownian motionW when the agent follows the truthful strategy y˚ and is a
Brownian motion with drift more generally (viz., whenever m PMLAC). Second, define
the y-adapted promised utility process q “ pqtqtě0 by

qt :“ E˚t

„
ż 8

t

e´ρpτ´tquτ dτ



.[3.1]

Thus, qt is the agent’s lifetime utility from time t onward under truthful reporting. Third,
define the y-adapted (negative) marginal promised utility process p “ pptqtě0 by

pt :“ E˚t

„
ż 8

t

e´pρ`λqpτ´tqθuτ dτ



.[3.2]

Recall that θuτ ” ´u1pcτ q for CARA utility. Therefore, pt represents the agent’s “marginal
incentives” for misreporting by a small amount at time t conditional on having reported
truthfully at all dates τ ă t. In particular, [3.2] is the continuous-time version of the
dynamic envelope formula (Pavan, Segal, and Toikka (2014, Theorem 1)) and we can
informally view pt as the derivative dqt{dbt, which is a local measure of the agent’s
on-path information rents. PPI argues that IC contracts can be written recursively with
qt and pt as state variables (pp. 1244–46).

Definition 3.1 (Contract PPI). The contract identified as being (uniquely) optimal in
PPI (henceforth Contract PPI) is that under which promised utility satisfies

qt “ q0 exp
`

´1
2
pk˚0σq

2t´ k˚0σW
y
t

˘

,[3.3]

marginal promised utility satisfies pt “ k˚0qt, and recommended consumption is

ct “ cpq0, ρq `
pk˚0σq

2

2θ
t`

k˚0σ

θ
W y
t ,[3.4]

where k˚0 :“ ρθ{pρ` λq and c̄pq, rq :“ ´ logp´rqq{θ.

Contract PPI has several striking features that will be important going forward.

Fact 2. Under truthful reporting, Contract PPI satisfies the following properties:
(i) It generates long-run bliss: As tÑ 8, we have qt, ut Ñ 0 and ct Ñ `8 almost surely,

i.e., the agent receives maximal utility and consumption in the long-run.17

17The fact that ct Ñ `8 a.s. follows from the Strong Law of Large Numbers for Brownian Motion
applied to [3.4] (with truthful reporting, y “ y˚), and implies the asserted a.s. convergence results for ut
and qt.
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(ii) It isMarkovian in promised utility: The continuation contract is a function of qt alone
because pt ” k˚0qt and, substituting [3.3] into [3.4], we have ct ” cpqt, ρq.

(iii) Promised utility is amartingale: Applying Itô’s lemma to [3.3] yields dqt “ ´σk
˚
0qt dW y

t .
(iv) It has a constant utility delivery rate of ρ: Formally, ut ” ρqt, which means the

principal delivers promised utility at a constant rate ρ.

PPI emphasizes parts (i)–(iii) of Fact 2 (pp. 1253–54) and notes property (iv) (p.
1253, second-to-last display). Each property in Fact 2 stands in contrast to the literature’s
findings in closely related settings:
(a) In contrast to Fact 2(i), the literature has found that, when private information is either

(i) i.i.d. or (ii) persistent and mean-reverting, optimal insurance contracts generate
immiseration (which in the current notation means qt, ut, ct Ñ ´8). See Section 7.2
below for references and further discussion.

(b) In contrast to Fact 2(ii), the literature has found that, when private information is
persistent, optimal contracts typically cannot be written recursively in promised
utility alone. See Section 7.1 below for references and further discussion.

(c) Points (iii) and (iv) of Fact 2, together with the property of CARA utility that u1pcq “
´θupcq, imply that the agent’s marginal utility of consumption u1pctq is a martingale,
so that his consumption obeys the Euler equation familiar from consumption-saving
problems. In contrast, the literature has found that optimal contracts typically do
not induce the agent’s Euler equation, unless the agent has access to hidden savings
outside of the contract. See Section 5 below for references and further discussion.

PPI emphasizes feature (a) above (pp. 1235, 1257, 1264) but does not note either (b) or
(c).18 We will see in Section 4.3 that property (c) is key to the observation that Contract
PPI is (generically) suboptimal.

4. Issues in PPI

This section formally describes the three issues in PPI’s model formulation and analysis
(with some details in Appendices A and D). Section 4.1 describes how PPI introduces
the NHB assumption that m ď 0 as part of the model formulation, but then bases the
formal analysis on the strictly stronger IML assumption that ∆ ď 0 (Observation 1).
Section 4.2 describes how PPI omits tail restrictions (such as GAC or NP-m) on the
agent’s feasible set of mispeporting strategies, so that, among other things, Contract PPI

18PPI does emphasize that the inverse Euler equation—i.e., the property that 1{u1pctq is a martingale,
which arises as an optimality condition for the principal in many dynamic Mirrleesian models—is not
satisfied in either of PPI’s applications (pp. 1235-36, 1257-58, 1264). However, this is not relevant for
understanding PPI’s results. It is well known that the inverse Euler equation holds when the agent’s utility
is additively separable across his consumption and private type, in both discrete and continuous time
(Golosov, Kocherlakota, and Tsyvinski 2003; Zhang 2009; Farhi and Werning 2013; Kapička 2013).
Conversely, it typically fails in settings without such separability, including the discrete-time models on
which PPI’s applications are based (Thomas and Worrall 1990; Atkeson and Lucas 1992).
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Sign Restriction
Tail restriction IML NHB None
None / LAC Not IC Not IC Not IC

NP-m (r ă ρ) IC, suboptimal IC, suboptimal IC, suboptimal

GAC IC, suboptimal IC, suboptimal IC, suboptimal
(only m˚ ” 0 feasible)

Table 1: Properties of Contract PPI under transient shocks (λ ą 0) and different restric-
tions on reporting strategies.

is generically not IC under PPI’s assumptions (Observation 2). Perhaps most importantly,
Section 4.3 shows that Contract PPI is generically strictly suboptimal, even after the first
two issues have been addressed (Observation 3).

Table 1 summarizes the implications of these issues for PPI’s hidden endowment
application and Contract PPI, which motivate our analysis in the remainder of the paper.
The first two issues also have implications for PPI’s abstract analysis of IC and optimal
contracts, which we discuss in Sections 4.1 and 4.2 for completeness. Readers interested
primarily in the suboptimality of Contract PPI—which we view as the most important
and economically substantive issue—and the economic implications thereof may proceed
directly to Section 4.3 with little loss of continuity.

4.1. Sign Restrictions on Misreporting Strategies

As part of the model formulation, PPI initially imposes the NHB assumption that only
m P M´ are feasible for the agent, writing (p. 1239): “To simplify matters, I assume
that the agent cannot overreport the true state, so yt ď bt [i.e., mt ď 0].” This restriction
is natural and common in the literature; as noted in PPI (p. 1239), it captures the ideas
that (i) the agent cannot borrow or save outside of the contract and (ii) the agent’s
endowment is partially verifiable (e.g., the principal can require that he deposit the
reported amount in a joint account). However, PPI’s formal analysis is based on the
stronger IML assumption that only m PMď are feasible for the agent. PPI writes (on
p. 1240): “Since the agent can report (or deposit) at most his entire state [i.e., mt ď 0],
we must have ∆t ď 0.” Unfortunately, this assertion is incorrect: NHB (m ď 0) is a
strictly weaker assumption than IML (∆ ď 0). There exist many non-positive functions
t ÞÑ mt with locally strictly positive derivatives ∆t “ dmt{dt ą 0.19 Formally, the set of

19NHB requires that ∆t ď 0 if and only if mt “ 0 (“on path”) and allows for any ∆t P R when
mt ă 0 (“off path”). Two points warrant clarification. First, PPI definesmt as the “stock of lies” (p. 1240).

14



strategies satisfying IML is strictly smaller than the set satisfying NHB, regardless of
the tail restrictions that one imposes.

Observation 1. M:
ď ĹM:

´ for all : P R`` Y tLAC, GACu.

Proof. The weak inclusions are trivial, so it suffices to find an m PMGAC
´ zMď (GAC is

the strongest tail restriction). Let mt :“ ´t for t P r0, 1q, mt :“ t ´ 2 for t P r1, 2q, and
mt :“ 0 for t ě 2. Then m P M´zMď because mt ď 0 everywhere and ∆t “ 1 for t P
r1, 2q, andm PMGAC because ∆ is bounded andmt ” 0 for t ě 2 (cf. Appendix C).

PPI’s reliance on IML is notable for two reasons:20
(i) If PPI intended to assume only NHB, then the analysis pertaining to the verification

of IC is incomplete because it relies on IML. In PPI’s general model, the distinction
between NHB and IML implicates the sufficient conditions for IC in PPI’s Theorem
4.1, the proof of which (in §A.2) would not go through as stated without IML (see
Appendix D). In the hidden endowment application, this distinction implicates the
attempted verification (in §A.3.2) that Contract PPI is IC in the generic λ ą 0 case,
which is not sufficient to show that Contract PPI would be IC under NHB. This
attempted verification also involves the derivation of a value function for the agent
(restated as V W in [4.1] below) that (a) diverges to ´8 as the current misreport
mt ă 0 approaches a finite valueM ă 0 and (b) is different from the agent’s value
function under NHB, which is everywhere finite (see Remark B.2 in Appendix B).
This indicates that IML is a much more stringent constraint on the agent than NHB.21

(ii) If PPI intended to adopt IML as a separate assumption, no economic motivation for it
is given. To the best of our knowledge, it has no analogue in the literature. IML implies
that once the agent under-reports his endowment, he can never revert to truthtelling:
mt ă 0 implies that mτ ď mt ă 0 for all τ ě t. Unlike NHB, this stronger property
does not follow from the principal’s ability to partially verify the agent’s endowment

However, mt is a flow variable with the same units as bt. Second, PPI refers to ∆t “ 0 as “truth-telling”
(pp. 1267 and 1272) or corresponding to a “truthful current report” (p. 1244) even at histories where
mt ă 0. This terminology blurs the distinction between truthful reporting (mt “ 0) and truthful reporting
of increments (∆t “ 0), potentially generating confusion about the definition of IC and its implications
for the agent’s behavior at off-path histories (which we describe in Section 6.4 below).

20To our knowledge, references to PPI in the literature only mention the weaker NHB assumption. For
instance, Kapička (2013, p. 1029) writes “[PPI] assumes that the agent cannot overstate her true shock
[i.e., endowment],” and Battaglini and Lamba (2019, p. 1459, fn. 36) write “[PPI] limits the set of possible
deviations available to the agent (who can report only incomes lower or equal to the true income).”

21Intuitively, when mt ă 0 the principal expects stronger positive mean-reversion than actually occurs,
and so punishes the agent for not reporting increments dyt ą dbt. Meanwhile, the IML constraint forces
the agent to report increments dyt ď dbt, so that he cannot avoid such punishments. As m Œ M , the
punishments become so severe that the agent’s continuation value decreases without bound. As we show
in Section 6.4, if the agent were not constrained by IML, he would find it optimal to “immediately” correct
for all past under-reports by “jumping” back to mt “ 0.
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reports. By construction, it also rules out the possibility of “one-shot” deviations,
which are central to virtually all dynamic analyses of incentive compatibility, making
PPI’s model and analysis incomparable to those in the literature.

Our Approach. Given that IML is used throughout PPI’s formal analysis, we hence-
forth adopt the perspective that IML was PPI’s intended assumption. Even under this
stronger assumption, PPI’s main analysis of infinite-horizon IC omits necessary tail
restrictions on the agent’s feasible set and Contract PPI is generically suboptimal (Obser-
vation 2 and 3 below). However, our main analysis (Sections 5–7) imposes neither IML
nor NHB, allowing us to (a) bypass what may be viewed as an economically problematic
assumption and (b) demonstrate that Contract PPI remains generically suboptimal under
any sign restrictions that one might wish to adopt (per Fact 1). To analyze IC without
IML, we employ techniques, explained in Section 6, that may prove relevant in other
continuous-time contracting models.

4.2. Tail Restrictions on Misreporting Strategies

PPI’s definition and analysis of IC contracts proceeds in two steps. First, PPI formulates
the model over a finite time horizon r0, T s (§2) and then provides necessary conditions
(§3) and sufficient conditions (§4) for finite-horizon IC. Second, PPI formulates the
principal’s problem of finding optimal contracts in an infinite-horizon version of the
model, first in an abstract setting (§5) and then in two solved applications (§§6–8).

There are two standard approaches for carrying out the second step, each of which
is common in the literature and has distinct advantages:22
(i) Use the definition of finite-horizon IC from the first step to solve for optimal contracts

over each finite horizon r0, T s, and then study the limit contract as T Ñ 8.
(ii) Define and characterize IC contracts directly over the infinite horizon r0,8q, and

then solve for the optimal such contract.
PPI adopts neither of these approaches. PPI defines IC contracts over the finite horizon
r0, T s, informally motivates the infinite-horizon model as a limit of the finite-horizon
model as T Ñ 8, and then directly defines the principal’s optimization problem, solves
for optimal contracts, and verifies that they are “IC” in the infinite-horizon model without
defining the agent’s feasible set F Ď M of misreporting strategies in that context or
checking transversality conditions on the agent’s value function.23 We describe these

22Approach (i) obviates the need to distinguish between LAC and GAC, but can be difficult to interpret
because the limit contract may be neither IC nor optimal in the appropriately defined infinite-horizon
model (see, e.g., Prat and Jovanovic (2014, Section 4)). Approach (ii) is typically carried out by imposing
GAC (as in Sannikov (2014); DeMarzo and Sannikov (2016); Chen (2021)), which might be viewed as an
overly stringent assumption.

23PPI describes the infinite-horizon setting as follows (p. 1248): “I now turn to the principal’s problem
of optimal contract design over an infinite horizon. Formally, I take limits as T Ñ 8 in the analysis
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omissions and their implications below.

Definition of Agent’s Strategy Space. As noted in Section 2.2, PPI’s formulation
of the finite-horizon model explicitly assumes that the agent is restricted to strategies
inducing AC changes-of-measure over the finite horizon. In the infinite-horizon context,
PPI never specifies analogous restrictions, such as LAC or GAC. It can be shown that
GAC is not a viable assumption in conjunction with IML because, in the generic case
of transient shocks (λ ą 0), truthtelling is the only feasible strategy satisfying both
conditions.24 We therefore explore the consequences of LAC combined with IML, which
seems to provide the infinite-horizon version of PPI’s model that is most faithful to its
finite-horizon version, while still providing a fully formulated contracting problem. For
brevity, we henceforth refer to this combination of restrictions as “PPI’s assumptions.”

Transversality in Agent’s Problem. PPI’s main analysis of infinite-horizon IC (pp.
1271–72 in §A.3.2) pertains to Contract PPI under transient shocks (λ ą 0). Therein,
PPI formulates the agent’s reporting problem as a stochastic control problem in which
∆t is a control variable and the current promised utility qt and misreport mt serve as
state variables, so that the agent’s value function at time t can be written as a function of
pqt,mtq.25 PPI first conjectures that the agent’s value function takes the form

V W
pq,mq :“

$

&

%

q exppθmq ¨
´

ρ`λ
ρ`λ`θλm

¯

for m P pM, 0s

´8 for m ďM ,
[4.1]

[of finite-horizon IC contracts] above. Thus we no longer have the terminal conditions for the co-states
[promised utility qT and marginal promised utility pT ] in (11) and (12) [on p. 1244 of PPI]; instead we
have the transversality conditions limTÑ8 e

´ρT qT “ 0 and limTÑ8 e
´ρT pT “ 0.” These transversality

(or terminal) conditions should be understood to hold only under truthful reporting (i.e., P˚-a.s. but not
necessarily Pm-a.s. for other m P F ) for two reasons. First, the terminal conditions of the finite-horizon
model analyzed in earlier sections of PPI apply only under truthful reporting. Second, more generally,
the first-order approach—which PPI derives via the Maximum Principle and other papers derive via the
Envelope Theorem (e.g., Pavan, Segal, and Toikka 2014)—only delivers necessary conditions for IC that
hold “on path” under truthful reporting. Thus, PPI’s transversality conditions make no reference to the
agent’s feasible set and are not sufficient conditions for IC. To verify that a contract is IC, one should
instead use a transversality condition that holds under all feasible strategies to ensure that the agent’s
value function is sufficiently “continuous at infinity” that he cannot benefit from infinite-length deviations
(cf. the proof of Theorem 3 in Pavan, Segal, and Toikka 2014).

24See Fact 3(i) in Appendix C, which implies that all contracts are MGAC
ď -IC. Meanwhile, the set MGAC

ď

does contain nontrivial strategies when λ “ 0, and the sets MGAC
´ and MGAC contain many nontrivial

strategies for all values of λ ě 0. Thus, GAC is problematic only in conjunction with IML and λ ą 0.
25PPI also provides a separate argument based on an informal infinite-horizon adaptation of PPI’s

Theorem 4.1. That argument is also incorrect for reasons similar to those described here (see Appendix D).
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where M :“ ´pρ ` λq{pθλq.26 This is the agent’s lifetime utility from always setting
∆ “ 0 irrespective of the current misreportm. PPI then shows that V W satisfies a suitable
HJB equation (p. 1272) and concludes from this that (a) V W is the agent’s value function
given the feasible set F “MLAC

ď and (b) Contract PPI is MLAC
ď -IC.

Conclusions (a) and (b) are both unwarranted because the agent’s HJB equation
may have multiple solutions. Standard “verification theorems” in stochastic control
require verifying that V W satisfies the transversality condition

lim
tÑ8

Em
“

e´ρtV W
pqt,mtq

‰

“ 0 for all m P F[TVC]

before concluding that it is the agent’s value function, rather than some other solution to
the HJB equation.27 PPI does not carry out this verification step. In fact, it follows from
[4.1] that V W violates [TVC] unless the feasible set F prevents the agent’s misreports
mt from approachingM too quickly. For instance, limtÑ8 Em

“

e´ρtV W pqt,mtq
‰

“ ´8

under any misreporting strategy that crosses M (and thereafter stays below) in finite
time. As there are many such strategies in MLAC

ď , one cannot draw either conclusion (a)
or (b) under PPI’s assumptions using the standard guess-and-verify approach.28

Consequences of Omissions. Unfortunately, conclusions (a) and (b) above are also
both incorrect. Formally, we show that the agent’s true value function is identically zero
under PPI’s assumptions, meaning that the agent can achieve near-infinite consumption
by deviating from truthtelling. Moreover, Contract PPI is not IC if the agent’s misreports
are permitted to violate NP-m with rate ρ (i.e., if the cumulative misreports

şT

0
mτdτ can

diverge to ´8 at an exponential rate faster than ρ).

Observation 2. If λ ą 0, then Contract PPI satisfies the following properties:
(i) The agent’s value function under feasible set F “MLAC

ď is identically zero.
(ii) It is not

“

MLAC
ď XMr

‰

-IC for any r ą ρ.

Proof. Given any ε ą 0 and κ ą 0, define the “Ponzi scheme” misreporting strategy

26PPI does not mention the constant M or specify that VW pq,mq “ ´8 when m ď M , apparently
intending for VW pq,mq to be defined as in the first line of [4.1] for allm ď 0. However, the expression in
the first line of [4.1] is strictly positive whenever m ăM , making it impossible for VW so-defined to be
the agent’s lifetime utility under any strategy (as the agent’s CARA utility function is strictly negative).

27For instance, see Pham (2009, Theorem 3.5.3). The importance of verifying transversality conditions
in problems with unbounded returns is also familiar from discrete-time dynamic programming (e.g.,
Stokey, Lucas, and Prescott 1989). The condition [TVC] differs from PPI’s transversality condition
limTÑ8 e

´ρT qT “ 0 P˚-a.s. (recall Footnote 23) in two ways. First, [TVC] concerns the conjectured
value function process VW rather than the promised utility process q, which do not coincide off-path.
Second, [TVC] concerns all feasible strategies, rather than just truthful reporting.

28The condition [TVC] is sufficient but not necessary for VW to be the true value function. By adapting
arguments from Appendix I, it can be shown that VW is, in fact, the agent’s true value function under IML
and the no Ponzi constraint [NP-m] with r “ ρ, which allows for many strategies that violate [TVC].
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mpε,κq as follows:

m
pε,κq
t :“

#

´t{ε for t P r0, εs,
´eκpt´εq for t ą ε.

Under this strategy, the agent under-reports forever at an exponentially growing rate of κ
(after initializing his misreport at time t “ ε tomε “ ´1). This strategy is plainly in Mr

ď

for all r ą κ and, being deterministic and bounded on each finite time horizon r0, T s,
is also in MLAC (cf. Appendix C). Next, notice that [3.4] allows us to write the agent’s
actual consumption process cmt ” ct´mt under Contract PPI and any strategym PM as

cmt “ cm
˚

t `
λ

λ` ρ

ˆ

ρ

ż t

0

mτdτ ´mt

˙

“: ξmt

where cm˚ is the agent’s consumption process under truthful reporting and the ξm process
is proportional to the agent’s “extra consumption” from misreporting. For the strategy
mpε,κq, a simple calculation yields

ξm
pε,κq

t “

#

t
ε

`

1´ ρ
2
t
˘

for t P r0, εq,
eκpt´εq

`

1´ ρ
κ

˘

` ρ
`

1
κ
´ ε

2

˘

for t P rε,8q.

It is easy to see that ξmpε,κqt ą 0 for all t ą 0 whenever κ ą ρ and ε P p0, εpρ, κqq, where
we let εpρ, κq :“ mint2{ρ, 2{κu.

We may now prove Observation 2. Let λ, ρ ą 0 and r ą ρ be given. For any
κ P pρ, rq and ε P p0, εpρ, κqq, it follows from the above that the agent derives strictly
greater consumption at all times t ą 0 from the strategy mpε,κq than from truthtelling.
This establishes part (ii). As for part (i), consider the sequence of strategies mp1{n,nq, so
that κn :“ nÑ `8 and εn :“ 1{n satisfies εn ă εpρ, κnq for all n ą ρ{2. By construction,
ξm

p1{n,nq

t Ñ `8 for each fixed t ą 0. This implies that the agent’s actual consumption
cm

p1{n,nq

t Ñ `8 for each fixed t ą 0. It is then easy to see that the agent’s lifetime utility
under mp1{n,nq converges to its upper bound of zero as nÑ 8. As each such strategy is
in MLAC

ď , this establishes part (i) and thereby completes the proof.

Our Approach & the Necessity of Tail Restrictions. Observation 2(ii) implies that
the no Ponzi constraint [NP-m] with some r ď ρ is a (nearly) necessary condition for
Contract PPI to be IC. More generally, our analysis suggests that the no Ponzi constraint
is important for PPI’s model to be well-behaved, and we conjecture that it may be
necessary for PPI’s model to admit IC contracts with nontrivial risk-sharing.29 For these

29For instance, we show in Appendix H thatwithout this constraint, Contract PPI cannot be implemented
as a direct mechanism but can be indirectly implemented in an alternative model where the agent has
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reasons, we henceforth focus on F -IC contracts for feasible sets F satisfying [NP-m].

4.3. Strict Suboptimality of Contract PPI

PPI states (p. 1254 in §6) that Contract PPI is optimal in the hidden endowment model.
This statement is problematic for two reasons. First, Observation 2 demonstrates that
Contract PPI is not IC under PPI’s assumptions. Even if this could be addressed by
imposing sufficiently tight tail restrictions on the agent’s strategy space, it is a priori
unclear whether Contract PPI would be IC if IML were relaxed to NHB (or if sign
restrictions were dropped altogether). Second, and more importantly, we show that—
independently of these issues—Contract PPI is strictly suboptimal whenever the agent’s
endowment process has non-zero mean reversion. (We describe PPI’s derivation of
Contract PPI and the source of this discrepancy in Appendix A.) Formally:

Observation 3. If λ ą 0, then Contract PPI satisfies the following properties:30
(i) It is Mρ-IC.
(ii) Given any r P p0, ρq, it is Mr-IC but strictly suboptimal among Mr-IC contracts.
Per Fact 1, the same is true if either NHB or IML is also imposed.

Proof. This follows from the analysis in Sections 5 and 6 below. Specifically, part (i)
is an immediate corollary of Theorem 2 in Section 6, while part (ii) is an immediate
corollary of that result in conjunction with Theorem 1 in Section 5.

Observation 3 has three implications. First, in conjunction with Observation 2, it
demonstrates that restricting the agent’s strategy space toMρ is a necessary and sufficient
condition for Contract PPI to be IC. Second, it establishes that Contract PPI is strictly
suboptimal under the slightly stronger assumption that the agent’s strategy space is
Mr for some r P p0, ρq. Third, a corollary of these observations and Fact 1 is that the
incentive compatibility and strict suboptimality of Contract PPI are both independent of
the sign restrictions that one imposes on the agent’s feasible set.

access to hidden savings (see Section 5.4), which is unreasonable because the agent has access to more
deviations in the latter model. Subsequent to our working paper, Acciaio, Crowell, and Cvitanić (2022)
show that, without any tail restrictions on the agent’s misreports, deterministic contracts—which do
not condition on the agent’s reports, and hence provide no insurance—are optimal within a class of
“linear contracts” that includes the SI Contracts that we study in Sections 5 and 6. (Acciaio, Crowell, and
Cvitanić (2022) also verify that, under suitable tail restrictions, the optimal SI Contract that we identify in
Theorem 1 is optimal among all linear contracts.) We view this as evidence that, for technical reasons, tail
restrictions are needed for PPI’s model to deliver a non-degenerate contracting problem.

30We state Observation 3 in this two-part manner to emphasize the weakest technical conditions under
which we are able to (separately) establish the incentive compatibility and suboptimality of Contract PPI.
The stronger, and standard, GAC assumption is sufficient for both parts of Observation 3.
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Our Approach & Self-Insurance. The formal analysis underlying Observation 3 is
somewhat involved, but the basic idea is simple. Under truthful reporting, the consump-
tion process induced by Contract PPI satisfies the agent’s Euler equation: plugging [3.4]
into the agent’s marginal utility u1pcq “ ´θupcq yields

[4.2] u1pctq “ Et ru1pcτ qs for all τ ě t,

so the agent’s marginal utility is a martingale under Contract PPI. This familiar equation
represents the agent’s optimal consumption-saving behavior in a setting where (a) there
is no principal and (b) the agent self-insures by investing in a risk-free bond with interest
rate r “ ρ. The prior literature shows that optimal contracts in discrete-time analogues of
PPI’s model typically do not coincide with solutions to self-insurance problems (Thomas
and Worrall 1990), except in an alternative model in which the agent also has access to
hidden savings (Allen 1985; Cole and Kocherlakota 2001). The crux of our approach is
to argue that this classic finding remains true in PPI’s model.

5. A Self-Insurance Approach

Section 5.1 presents a standard self-insurance problem for the agent. Section 5.2 uses this
problem to construct an indirect implementation for our main class of “self-insurance
contracts.” Section 5.3 shows that this class contains Contract PPI and characterizes the
optimal self-insurance contract. Section 5.4 summarizes additional results.

5.1. Agent’s Self-Insurance Problem

Consider the classic self-insurance problem faced by the agent with CARA utility
upcq “ ´e´θc when there is no principal to provide insurance. In this problem, the agent
receives only (i) his endowment stream b and (ii) some initial asset holdings A0 P R,
and must self-insure by borrowing and saving in a risk-free bond market at the given
interest rate r ą 0. Formally, the agent solves31

V SI
pA0, b0q :“ sup

ĉPApA0,b0q

E0

„
ż 8

0

e´ρtupĉtq dt



[5.1]

where ApA0, b0q is the set of pA0, b0)-feasible consumption strategies ĉ “ pĉtqtě0, which
consists of all consumption processes that are b-adapted and induce an asset process
Aĉ “

`

Aĉt
˘

tě0
that solves

dAĉt “ prA
ĉ
t ` bt ´ ĉtq dt[5.2]

31Recall that P denotes the probability measure over paths of b induced by the law of motion [2.1], and
let Et denote the associated conditional expectation operators.
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subject to the initial condition Aĉ0 “ A0 and the no Ponzi condition

lim
tÑ8

e´rtAĉt ě 0 P-a.s.[NP-A]

A consumption strategy ĉ is optimal in the agent’s self-insurance problem if it attains
the supremum in [5.1], where V SIpA0, b0q is the agent’s self-insurance value function.

Lemma 5.1. The consumption strategy ĉ˚ defined by

ĉ˚t :“ ĈpA0, b0q `

ˆ

r ´ ρ` σ2fpr;λq2{2

θ

˙

t`
σfpr;λq

θ
Wt[5.3]

is optimal in the agent’s self-insurance problem,32 where fpr;λq :“ rθ{pr ` λq and

ĈpA, bq :“ rA`
r

r ` λ
b´ Āpr;λq[5.4]

Āpr;λq :“
r ´ ρ` σ2fpr;λq2{2

rθ
´

µ

r ` λ
.[5.5]

The proof of Lemma 5.1 is in Appendix E. The consumption strategy in [5.3]–[5.5]
is the continuous-time limit of the discrete-time self-insurance solutions in Caballero
(1990) and Wang (2003), and was previously derived in continuous time by Wang (2004,
2006). Our derivation involves slightly different arguments than in this prior work,
allowing us to dispense with some technical conditions imposed therein.33

Lemma 5.1 implies that the agent’s optimal consumption strategy can be expressed
recursively as ĉ˚t ” Ĉ pA˚t , btq, whereA˚t :“ Aĉ

˚

t is the induced asset process. Specifically,
at each time t, the agent consumes a multiple r of his permanent income

A˚t ` Et
„
ż 8

t

e´rpτ´tqbτ dτ



“ A˚t `
1

r

„

r

r ` λ
bt `

µ

λ` r



[5.6]

adjusted by subtraction of a constant term. This facilitates a natural interpretation of
the agent’s risk exposure, viz., the sensitivity fpr;λq{θ “ r{pr ` λq of consumption to
endowment shocks in [5.3]. Observe that the derivative of the agent’s permanent income
[5.6] with respect to his current endowment bt is 1{pr ` λq. Because wealth effects are
absent under CARA utility, the agent optimally responds to a marginal increase in his

32Furthermore, this strategy is uniquely optimal (P-a.e.) because the set of feasible consumption
strategies is convex (see [E.1] in Appendix E) and the agent’s objective function is strictly concave.

33Wang (2004, 2006) imposes a technical integrability condition on the space of admissible asset
processes, as well as a transversality condition on a function that is conjectured to be the agent’s value
function (and verified to be so under these assumptions). Our argument instead works directly with the
agent’s true value function and only requires that the asset process satisfies [5.2] and [NP-A]. This allows
us to construct an exact mapping between the agent’s consumption strategies in the indirect “self-insurance
contracts” of this section and his reporting strategies in their direct revelation counterparts (see Section 6).
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endowment by permanently shifting up his future consumption by a constant amount of
r{pr`λq at all future dates. This increases the present value of consumption by 1{pr`λq,
exactly matching the increase in permanent income.

It will be useful in what follows to note the agent’s risk exposure is strictly in-
creasing in r when λ ą 0 but is constant in r when λ “ 0. Intuitively, as the coefficient
fpr;λq depends only on the ratio λ{r, that ratio is the endowment’s “interest-adjusted
rate of mean reversion.” For a fixed λ ą 0, the adjusted rate λ{r is decreasing in r, so
that increasing r increases the “effective persistence” of endowment shocks. However,
when λ “ 0, endowment shocks remain perfectly persistent regardless of r.

Lemma 5.1 has several further implications that will prove useful (details are in
Appendix E). First, the agent’s optimal strategy satisfies the familiar Euler equation

epr´ρqtu1pĉ˚t q “ Et
“

epr´ρqτu1pĉ˚τ q
‰

for all τ ą t,[5.7]

which specifies that the agent’s discounted marginal utility is a martingale (and reduces
to [4.2] when r “ ρ). Second, the agent’s continuation value process V “ pVtqtě0 defined
by Vt :“ V SIpA˚t , btq satisfies

upĉ˚t q

r
“ Vt[5.8]

“ V0 exp

„

´

ˆ

r ´ ρ`
σ2fpr;λq2

2

˙

t´ fpr;λqσWt



.[5.9]

Display [5.8] implies that the agent’s self-insurance solution induces a constant utility
delivery rate of r,34 while [5.9] implies that the agent’s continuation value process Vt is a
geometric Brownian motion and the discounted value process epr´ρqtVt is a martingale.
Finally, plugging the optimal strategy [5.3] into the agent’s objective [5.1] lets us express
the agent’s self-insurance value function as

[5.10] V SI
pA0, b0q “ V̂ SI exp

„

´θr

ˆ

A0 `
b0

r ` λ

˙

where V̂ SI :“ ´1
r

exp
`

θĀpr;λq
˘

is a constant.

5.2. Self-Insurance Contracts

We now introduce a class of contracts defined by an indirect implementation in which
the principal acts as the agent’s “bank” by (i) giving an initial lump-sum (asset) transfer
to the agent and then (ii) allowing the agent to self-insure at interest rate r ą 0, which

34This property arises because, under CARA utility, the Euler equation [5.7] implies that discounted
flow utility epr´ρqtupĉ˚t q is itself a martingale.
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is determined by a constant marginal tax (if r ă ρ) or subsidy (if r ą ρ) imposed on
the agent’s savings. (Recall from Section 2.1 that ρ can be interpreted as the market
rate at which the principal finances the contract.) In this implementation, the agent is
only able to borrow and save via his “account” with the principal—not in the ambient
market—so that the principal can observe, and hence tax, the agent’s asset holdings. The
principal does not observe the agent’s endowment or actual consumption. There is no
communication: the agent does not submit endowment reports.

Definition 5.2. The Self-Insurance Contract (SI Contract) pb0, q0, rq is the indirect mech-
anism consisting of the following steps:
(i) The principal gives the agent initial assets

A0pb0, q0, rq :“
cpq0, rq

r
´

b0

r ` λ
`
Āpr;λq

r
[5.11]

where cpq, rq :“ ´ logp´rqq{θ and Āpr;λq is defined in [5.5].
(ii) The principal, acting as the agent’s bank, allows the agent to solve his self-insurance

problem at the rate r (as defined in Section 5.1) by imposing a constant marginal tax
(or subsidy) τprq :“ 1´ r{ρ on the agent’s capital gains ρAt. The principal thereby
collects tax revenue τprqρAt at each instant.

The principal’s expected lifetime cost is Πpb0, q0, rq :“ A0 ´ E0

“ş8

0
e´ρtτprqρAtdt

‰

.

Clearly, the agent’s best-response when faced with the SI Contract pb0, q0, rq is to
follow the consumption-saving strategy described in Lemma 5.1 for the induced self-
insurance problem with initial assets A0pb0, q0, rq and rate r. It is then easy to verify from
[5.8] that the agent’s initial lifetime utility satisfies V0 “

1
r
u
`

ĈpA0pb0, q0, rq, b0q
˘

“ q0, so
that the contract does, in fact, deliver the requisite promised utility. Plugging the agent’s
optimal strategy into the principal’s cost function, we find that the principal’s cost of the
SI Contract pb0, q0, rq admits a simple closed-form expression.

Lemma 5.3. The principal’s cost Πpb0, q0, rq of the SI Contract pb0, q0, rq satisfies

Πpb0, q0, rq “ J˚pb0, q0q `
logpρ{rq

ρθ
`
r ´ ρ

θρ2
`

σ2θr2

2ρ2pr ` λq2

“ σ2fpr;λq2{
`

2θρ2
˘

“ E0

„
ż 8

0

e´ρt pĉ˚t ´ btq dt



[5.12]

where J˚pq0, b0q is the principal’s first-best cost function and ĉ˚ is defined in [5.3].35

35That is, J˚pb0, q0q is the principal’s cost of providing full insurance in the full-information problem
where the agent’s endowment is observable and contractable. It is easy to show, as in PPI (p. 1252), that
J˚pb, qq “ rpρ` λqc̄pq, ρq ´ µ´ ρbs{ρpρ` λq, where c̄pq, ρq “ ´ logp´ρqq{θ as defined above in [5.11].
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The proof of Lemma 5.3 is in Appendix F. Display [5.12] states that the principal’s
cost of the SI Contract pb0, q0, rq, which is defined in terms of the initial wealth transfer
and subsequent tax revenue, coincides with the expected resource cost of the contract,
as defined in [2.2] for truthful direct revelation contracts.36

5.3. Contract PPI and the Optimal SI Contract

We now establish the main result of this section: Contract PPI can be indirectly im-
plemented as an SI Contract with zero taxes (r “ ρ), whereas the optimal SI Contract
features strictly positive taxes (r ă ρ) whenever endowment shocks are transient (λ ą 0).
Consequently, Contract PPI is generically suboptimal within the class of SI Contracts.

ImplementingContract PPI as an SIContract. To begin, we observe that the agent’s
consumption process and the principal’s costs are identical under (i) Contract PPI if
the agent reports truthfully and (ii) the corresponding SI Contract with rate r “ ρ if the
agent follows his optimal consumption-saving strategy.

To verify this, compare the agent’s promised utility process q and recommended
consumption process c under Contract PPI (recall [3.3] and [3.4]) to his value function
process V and optimal consumption strategy ĉ in the self-insurance problem with interest
rate r “ ρ (recall [5.3] and [5.9]). If the agent follows the truthful reporting strategym˚ in
Contract PPI, then these processes are identical: q “ V and c “ cm

˚

“ ĉ. By Lemma 5.3,
the indirect implementation costs the principal

Πpb0, q0, ρq “ J˚pb0, q0q `
σ2θ

2pρ` λq2
,[5.13]

which coincides with PPI’s expression (p. 1253) for the principal’s lifetime cost (as
defined in [2.2]) under Contract PPI.

In other words, Contract PPI (under truthful reporting) is outcome-equivalent to
letting the agent self-insure at the ambient market rate ρ. This equivalence allows us
to reinterpret the two main economic findings that PPI derives from Contract PPI in
terms of known results from the self-insurance literature. First, as stated in Fact 2(i),
PPI finds that Contract PPI leads to long-run bliss: ct Ñ `8 and qt Ñ 0 almost surely.
Correspondingly, in the context of self-insurance, it is known quite generally that when
the interest rate satisfies r ě ρ, the agent’s desire to accumulate precautionary savings
leads him to both save and consume without bound: A˚t , ĉ˚t Ñ `8 P-a.s. (Sotomayor
(1984); Chamberlain and Wilson (2000); Ljunqvist and Sargent (2000, Ch. 17)). Second,
PPI (pp. 1254–55) finds that, under Contract PPI, the quality of risk-sharing degrades as

36Furthermore, any SI Contract can be implemented using only flow transfers (as in Section 2) by
replacing the lump-sum transfer ofA0 with a deterministic transfer process ŝ satisfying dŝt :“ pα´λŝtqdt
for suitably chosen parameters ŝ0, α P R.
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the agent’s endowment becomes more persistent (i.e., fpρ;λq is decreasing in λ). This
comparative static is known to arise from the agent’s optimal consumption-smoothing
in the corresponding self-insurance problem (Caballero (1990); Wang (2003)).

The Optimal SI Contract. This discussion suggests a simple way to improve upon
Contract PPI. Namely, Lemma 5.3 and a short calculation reveal that

d

dr
Πpb0, q0, rq|r“ρ ě 0, with strict inequality if and only if λ ą 0.

Thus, whenever λ ą 0, some SI Contract pb0, q0, rq with r ă ρ delivers the same lifetime
utility q0 to the agent at a strictly lower cost to the principal than [5.13]. In other words,
Contract PPI is generically improvable by taxing the agent’s savings.

Theorem 1. For any initial condition pb0, q0q, there exists an optimal SI Contract
pb0, q0, r

˚q, where r˚ is a minimizer of Πpb0, q0, ¨q from [5.12].37 It satisfies the following:
(i) If λ ą 0, then r˚ ă ρ and the optimal SI Contract has a strictly lower cost than

Contract PPI.
(ii) If λ “ 0, then r˚ “ ρ and the optimal SI Contract implements Contract PPI.

Proof. Let pb0, q0q be given. It is easy to see that limrÑ0 Πpb0, q0, rq “ limrÑ8 Πpb0, q0, rq “

8 and that Πpb0, q0, ¨q is continuously differentiable onR``. Consequently, there exists a
minimizer r˚ P R``, and any such minimizer satisfies the necessary first-order condition
d
dr

Πpb0, q0, rq|r“r˚ “ 0, which can be expressed as

d

dr

„

´ logprq `
r

ρ



ˇ

ˇ

ˇ

ˇ

ˇ

r“r˚

`
d

dr

„

σ2f 2pr;λq

2ρ



ą 0 if λ ą 0, “ 0 if λ “ 0

ˇ

ˇ

ˇ

ˇ

ˇ

r“r˚

“ 0.[5.14]

When λ ą 0, the second term in [5.14] is strictly positive, implying that the first term is
strictly negative. It follows that any minimizer satisfies r˚ ă ρ, delivering part (i). When
λ “ 0, the second term in [5.14] is identically zero and the objective Πpb0, q0, ¨q is strictly
convex. Thus, the unique minimizer is r˚ “ ρ, delivering part (ii).

To get additional intuition for Theorem 1, observe that under an SI Contract with
interest rate r, the agent’s continuation utility process V from [5.9] evolves as

dVt
Vt

“ pρ´ rqdt´ fpr;λqσ dWt.[5.15]

Intuitively, [5.15] reflects two distortions away from first-best insurance provision: the
“drift distortion” determined by the difference |ρ ´ r| ą 0 and the “risk distortion”

37Going forward, we slightly abuse terminology by referring to the optimal SI Contract. The optimum
is always unique when λ “ 0 and, when λ ą 0, is unique for generic specifications of model parameters.
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determined by the risk exposure coefficient fpr;λq ą 0. The optimal SI Contract results
from the principal’s optimal trade-off between these two distortions. Note that when
r “ ρ, as in Contract PPI, there is non-zero risk exposure but zero drift distortion,
corresponding to PPI’s observation that the agent’s promised utility under Contract PPI
is a martingale (Fact 2(iii)). There are two cases to consider:
(a) Transient endowment shocks (λ ą 0): In this case, the risk exposure coefficient fpr;λq

is strictly increasing in r. Therefore, marginally decreasing r from the value r “ ρ

has two effects: it creates a non-zero drift distortion while decreasing the agent’s
risk exposure. The principal’s first-order condition [5.14] equates the marginal cost of
the former effect (first term) with the marginal benefit of the second effect (second
term), leading to an optimal rate of r˚ ă ρ.38 This corresponds to imposing a strictly
positive tax on the agent’s savings, consistent with the literature’s finding that optimal
contracts in related insurance settings feature a “savings wedge” that relaxes the
agent’s IC contraints (e.g., Golosov, Kocherlakota, and Tsyvinski (2003)).

(b) Permanent endowment shocks (λ “ 0): In this case, the risk exposure coefficient
fp¨; 0q ” θ is constant in r. Consequently, the principal cannot manipulate the agent’s
risk exposure by imposing a tax or subsidy on savings, as reflected by the fact that
the second term in the principal’s first-order condition [5.14] vanishes. Moving r
away from the value r “ ρ therefore only generates the cost of a non-zero drift
distortion, without creating any risk-reduction benefit. To eliminate this cost, the
principal optimally sets r “ ρ and thereby implements Contract PPI.

In Section 6 below, we show that SI Contracts are IC when reformulated as direct-
revelation contracts. This analysis, combined with Theorem 1, completes the proof of
our main observation that Contract PPI is generically suboptimal (Observation 3).

5.4. Further Analysis

Properties of SI Contracts. In Appendix G, we establish some additional useful facts
about SI Contracts. We summarize them here:
(i) The class of SI Contracts is characterized by the property, which we call Stationarity,

that promised utility and marginal promised utility are proportional, viz., pt ” k0qt
for some constant k0 ą 0. Per Fact 2(ii), Contract PPI plainly has this property. As
noted in Appendix A, the key incorrect step in PPI’s derivation of Contract PPI
involves arguing that restricting to Stationary Contracts is without loss of optimality.
We show that this conclusion is false: Theorem 1 is equivalent to the statement that
Contract PPI is optimal within the class of Stationary Contracts if and only if λ “ 0,
contradicting that Contract PPI is generally optimal among all IC contracts.

38It is never optimal to set r ą ρ because doing so creates a non-zero drift distortion while also
increasing the agent’s risk exposure, both of which are costly to the principal.
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(ii) The class of SI Contracts coincides with the class of “state-consistent” renegotiation-
proof contracts introduced by Strulovici (2022). This equivalence provides a separate
foundation for our focus on SI Contracts based on the principal’s limited commitment.
It also shows that SI Contracts provide a simple indirect implementation for the full
class of renegotiation-proof contracts in PPI’s model.

(iii) The long-run behavior of the optimal SI Contract depends starkly on the persistence
of the agent’s endowment: there exists a threshold λ ą 0 such that this contract results
in immiseration when persistence is sufficiently low (λ ą λ) and results in bliss
when persistence is sufficiently high (λ ă λ). This implies that the long-run bliss
property of Contract PPI is generally not robust to optimization within the class of
SI Contracts. This result may also be of independent interest, given the literature’s
emphasis on long-run properties of optimal contracts.

Hidden Savings. PPI adopts the standard assumption that the agent cannot save or
borrow outside of his relationship with the principal. Our SI Contracts rely on this
assumption: if instead the agent could covertly trade at the market rate ρ, he could cir-
cumvent any tax imposed by the principal. Since Contract PPI is implemented with zero
taxes, this suggests that it may be uniquely robust to such manipulation. We formalize
this idea in Appendix H, where we consider an alternative version of PPI’s model with
hidden savings. In this setting, Theorem 4 shows, in essence, that every IC contract
is outcome-equivalent to Contract PPI, which is therefore the optimal contract. This
parallels Allen’s (1985) and Cole and Kocherlakota’s (2001) classic discrete-time char-
acterizations of optimal hidden savings contracts and provides a viable foundation for
Contract PPI, albeit one that is rather different than suggested in PPI.

6. Incentive Compatibility of SI Contracts

In Section 5, we characterized the agent’s optimal consumption strategy in an indirect
implementation. We now reformulate SI Contracts as direct mechanisms and show
that they are IC, i.e., truthtelling is the agent’s optimal reporting strategy. Our analysis
addresses the two issues in PPI related to IC (Observations 1 and 2) and introduces some
new techniques that may be applicable in other continuous-time models.

6.1. Extended Reporting Problem

We will see below (Section 6.4) that, if the agent’s recent reports are not truthful
(limεŒ0mt´ε ‰ 0), then he has an incentive to “instantly” revert to truthtelling (set
mt “ 0). This requires him to submit a discontinuous “jump report.” While PPI’s for-
mulation allows the agent to approximate such behavior (by sending |∆t| Ñ 8 for a
vanishing measure of times), discontinuous report paths are ruled out by construction.
Thus, for the purpose of analyzing IC, we find it convenient in this section to “extend”
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PPI’s model formulation (from Section 2.1) in two ways:39
(i) We allow the agent’s feasible set F of misreporting strategies to include m RM.
(ii) We allow the principal’s contract, the y-adapted transfer process s, to respond in any

way we choose to y processes corresponding to m P F zM. To maintain consistency
with Section 2.1, we still require y processes corresponding to m P M to induce
continuous sample paths of s.

This approach is justified by an elementary variant of Fact 1: if a contract as defined
in (ii) above is F -IC for a given feasible set F of b-adapted misreporting strategies
(not necessarily satisfying F ĎM), then the contract is also rF XMs-IC. If the agent
does not have a profitable deviation from truthtelling within the “extended” feasible set
F , then he cannot have a profitable deviation within the “actual” (smaller) feasible set
F XM. Therefore, if the goal is to verify that a contract is rF XMs-IC, then we are free
to “extend” the contract arbitrarily to paths of y that correspond to “infeasible” paths of
m P F zM, and then verify that the resulting “extended” contract is F -IC.40,41

6.2. Direct Revelation SI Contracts

We can recast any SI Contract as a direct-revelation contract as follows:

Definition 6.1. The Direct-Revelation Self-Insurance Contract (DR-SIC) pb0, q0, rq is
the direct revelation mechanism in which:
(i) The principal keeps track of the y-adapted virtual asset process Av defined by

Avt :“ A0pb0, q0, rq ` Āpr;λqt`
λ

r ` λ

ż t

0

yτ dτ[6.1]

where A0pb0, q0, rq is defined in [5.11] and Āpr;λq is defined in [5.5].
(ii) The agent’s recommended consumption is the y-adapted process c defined by

ct :“ Ĉ pAvt , ytq “ rAvt `
r

λ` r
yt ´ Āpr;λq[6.2]

39This approach builds on ideas from Strulovici (2022). While this approach is convenient, it is not
necessary: Section 7.3 and Appendix I describe how to analyze IC under PPI’s assumption that F ĎM.

40One possible “extension,” described in Footnote 16, involves “shooting” the agent if his strategy
m P F zMgenerates an “immediately detectable” deviation, such as a discontinuous sample path of reports
ŷ R Cr0,8q, with positive probability. While this extension is without loss of generality, it is “trivial” in
the sense that it effectively prevents the agent from using m RM. In Section 6.2–6.4 below, we find it
more useful to consider an extension that “compactifies” the agent’s reporting problem by considering
a “closure” of the original contract that treats jump reports as the limit of “approximate jump” reports
(whereby |∆τ | Ñ 8 for a vanishing measure of times).

41When the feasible set F permitsm with discontinuous sample paths, we can no longer view the agent
as choosing a measure Pm on the space C pr0,8qq of continuous paths (cf. Footnote 11). This has no
adverse consequence for our analysis in Section 6.2–6.4, which does not use any change of measure.
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where Ĉ pA, yq is defined in [5.4].

Put simply, in a DR-SIC the principal “saves” on the agent’s behalf and recommends
that he consume as would be optimal in his self-insurance problem, assuming that the
agent is truthful so that y ” b. We emphasize that virtual assets are not a “physical”
object, but simply a state variable that the principal uses to track what the agent would
have done in his self-insurance problem.42

Observe that every DR-SIC: (a) is well-defined under any report process y that
induces a well-defined virtual asset process Av in [6.1], and (b) specifies continuous trans-
fers whenever y is continuous. Denote the corresponding set of extended misreporting
strategies by

[6.3] Mext :“

"

m : m is b-adapted and
ż t

0

|mτ |dτ ă 8 P-a.s. @t ě 0

*

.

Following our treatment of tail restrictions from Section 2.2, we also define, for every
r ą 0, the subset of extended strategies Mr

ext ĹMext by

[6.4] Mr
ext :“ tm PMext : [NP-m] holds for rate ru .

We will study the “extended” reporting problem in which the agent’s feasible set is
F “ Mr

ext (for a suitable value of r ą 0). Clearly, Mr
ext Ľ Mr because [6.3]–[6.4] allow

for strategies with discontinuous sample paths. Notably, any DR-SIC responds to a
“jump report” at time t (whereby mt ´ limεŒ0mt´ε “M ‰ 0) as if it were the limit of
“approximate jump reports” at time t (whereby ∆τ “M{ε for τ P rt, t` εq and εŒ 0).43

Using this notation, we can state the main result of this section as follows:

Theorem 2. For any given r ą 0, every DR-SIC pb0, q0, rq is Mr
ext-IC. Thus, such con-

tracts are also F -IC for any smaller strategy space F ĎMr
ext.

The assumptions in Theorem 2 cannot be substantively relaxed: by mimicking the
proof of Observation 2, it is easy to show that no DR-SIC with rate r is

“

MLAC
ď XMr1

‰

-IC
for any r1 ą r. We conclude that sufficiently tight no Ponzi constraints are essential for
DR-SICs to be IC (while sign and absolute continuity restrictions are not).

We provide two independently instructive proofs of Theorem 2 below. Section 6.3
presents an indirect “revelation principle” argument in which we characterize the map-
ping between reporting strategies in a DR-SIC and consumption-saving strategies in

42As defined above, DR-SICs are recursive in the state variables pAvt , ytq, viz., the y-adapted transfer
process s can be written as st “ ĈpAvt , ytq ´ yt. By defining promised utility as qt :“ V SIpAvt , ytq (where
V SI is defined in [5.10]), we can equivalently write any DR-SIC recursively in the state variables pqt, ytq,
as in PPI’s treatment. In this alternative formulation, it is easy to see that a DR-SIC with interest rate ρ
coincides with Contract PPI (see Definition 3.1) under any reporting strategy.

43See Lemma B.1 and Remark B.2 in Appendix B.
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the corresponding indirect SI Contract. This approach clarifies that the no Ponzi con-
dition [NP-m] on the agent’s misreports in the direct mechanism is equivalent to the
no Ponzi condition [NP-A] on the agent’s assets in the indirect mechanism. Section 6.4
then presents an alternative argument in which we directly analyze the agent’s reporting
incentives in a DR-SIC using stochastic control. This approach elucidates the agent’s
reporting incentives at non-truthful histories.

6.3. Indirect Proof: Revelation Principle

We establish Theorem 2 in two steps. First, we characterize the agent’s actual con-
sumption process cm in a DR-SIC under an arbitrary misreporting strategy m P Mext

(Lemma 6.2). Second, we show that an actual consumption process cm can be induced
in a DR-SIC with interest rate r by some strategy m P Mr

ext if and only if cm is a
feasible consumption strategy for the agent in the corresponding indirect SI Contract
(Lemma 6.3). Theorem 2 is then immediate: the absence of profitable deviations in
the indirect implementation implies the absence of profitable deviations in the direct
mechanism.

Step 1: Induced Consumption Processes. Let ĉ˚ denote the agent’s optimal con-
sumption strategy in the SI Contract pb0, q0, rq and let A˚ denote the corresponding asset
process, so that ĉ˚t “ ĈpA˚t , btq as in Lemma 5.1. The following lemma characterizes how
misreports in the direct mechanism correspond to consumption choices in the agent’s
self-insurance problem.

Lemma 6.2. Given any misreporting strategym PMext, the agent’s actual consumption
cmt :“ ct ´mt in the DR-SIC pb0, q0, rq satisfies

cmt “ ĈpAvt , btq ´
λ

r ` λ
mt[6.5]

“ ĉ˚t `
λ

r ` λ

ˆ

r

ż t

0

mτ dτ ´mt

˙

.[6.6]

Proof. Display [6.5] follows from recalling the identity cmt ” ct ´mt and substituting
the identity yt ” bt `mt into the expression for ct in [6.2]. To obtain [6.6], observe from
[6.1] that Avt ” A˚t `

λ
r`λ

şt

0
yτdτ and substitute this identity into [6.5].

Display [6.5] implies that under-reporting by setting mt ă 0 in the DR-SIC corre-
sponds to over-consuming by ´ λ

r`λ
mt ą 0 in the indirect SI Contract, holding fixed the

agent’s assets at Avt . At the same time, because virtual assets evolve as

dAvt
dt

“
dA˚t
dt

`
λ

r ` λ
mt,[6.7]
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an under-report of mt ă 0 in the DR-SIC corresponds to under-saving by λ
r`λ

mt ă 0 in
the indirect SI Contract. Display [6.6] describes how these virtual savings distortions
accumulate over time, so that the agent’s actual consumption cmt in the DR-SIC may be
either higher or lower than his optimal consumption ĉ˚t in the indirect SI Contract.

Step 2: Outcome-Equivalence of Feasible Sets. The following lemma relates the
sets of feasible consumption processes in the direct and indirect implementations.

Lemma 6.3. For any b-adapted consumption process ĉ, the following are equivalent:
(i) It is feasible in the SI Contract pb0, q0, rq.
(ii) It satisfies ĉ “ cm for some misreporting strategy m P Mr

ext in the corresponding
DR-SIC pb0, q0, rq.

Proof. That (ii) implies (i) is immediate from the definitions. To see that (i) implies (ii),
suppose that ĉ is feasible in the SI Contract pb0, q0, rq and let Aĉ be the corresponding
asset process (i.e., solution to [5.2]–[NP-A]). Motivated by [6.5], define the misreporting
strategy mĉ

t :“ r`λ
λ

”

ĈpAĉt , btq ´ ĉt

ı

, which is in Mext by construction.44 We claim that
mĉ induces the virtual asset process Av “ Aĉ and actual consumption process cmĉ “ ĉ in
the DR-SIC pb0, q0, rq. Substitute mĉ into [6.1], expand the definition of Ĉ from [5.4], and
recall thatAĉ (being a solution to [5.2]) satisfiesAĉt “ A0pb0, q0, rq`

şt

0

`

rAĉτ ` bτ ´ ĉτ
˘

dτ .
After simplification, this yields Avt ” Aĉt . Since Aĉ satisfies [NP-A], it follows that mĉ

satisfies [NP-m], and thus mĉ PMr
ext. Finally, substituting Avt ” Aĉt and the definition of

mĉ into [6.5] (from Lemma 6.2) yields cmĉt ” ĉt, completing the proof.

The key observation underlying Lemma 6.3 is that, in a DR-SIC, the no Ponzi
condition [NP-m] on misreports is equivalent to the no Ponzi condition [NP-A] on his
virtual asset process Av. Formally, given any misreporting strategy m PMext, the limits
limTÑ8 e

´rTAvT and limTÑ8 e
´rT

şT

0
mt dt are P-a.s. equal.45 Since it is well-understood

that [NP-A] is necessary for the agent’s self-insurance problem to be well-posed, this
suggests that [NP-m] is a natural constraint on misreporting strategies in DR-SICs.

Proof of Theorem 2. By definition, ĉ˚ is the agent’s optimal consumption process
in the indirect SI Contract pb0, q0, rq. Thus, Lemma 6.3 implies that any misreporting
strategy m P Mr

ext for which cm “ ĉ˚ is optimal for the agent in the corresponding

44Clearly,mĉ is b-adapted. To verify that it is integrable, expand the definition of Ĉ from [5.4], regroup
terms, and use the facts that b solves [2.1] and Aĉ solves [5.2] to conclude that

şt

0
|mĉ

τ |dτ ď
şt

0
|rAĉτ `

bτ ´ ĉτ |dτ `
şt

0
|Āpr;λq|dτ ` λ

r`λ

şt

0
|bτ |dτ ă 8 P-a.s.

45To see this, integrate the “virtual savings” equation [6.7] to obtain AvT “ A˚T ` λpλ` rq
´1

şT

0
mt dt,

whereA˚ is the asset process in the corresponding SI Contract induced by the agent’s optimal consumption-
saving strategy therein (Lemma 5.1). We have limTÑ8 e

´rTA˚T “ 0 because the agent optimally “leaves
no money on the table” in his self-insurance problem (see Lemma E.3 in Appendix E).
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DR-SIC pb0, q0, rq. By [6.6] in Lemma 6.2, the truthful strategy m˚ ” 0 is one such
strategy. It follows that the DR-SIC pb0, q0, rq is Mr

ext-IC.

6.4. Direct Proof: Dynamic Programming

We now establish Theorem 2 by directly analyzing the agent’s reporting incentives.46

Proof of Theorem 2. Fix a DR-SIC with interest rate r. By [6.5] in Lemma 6.2, the
agent’s actual consumption process cm is Markovian in the contemporaneous virtual
assets Avt , true endowment bt, and misreport mt. Thus, the agent’s reporting problem
(with strategy space Mr

ext) can be cast as one of stochastic control in which pAvt , btq serve
as state variables and mt is a control variable. Let V DRpAvt , btq denote the agent’s value
function in this control problem. By standard arguments, it can be shown that47

[6.8] V DR
pAvt , btq “ V̂ DR exp

„

´θr

ˆ

Avt `
bt

r ` λ

˙

for some constant V̂ DR ă 0, and that V DRpAvt , btq is a solution to the HJB equation

ρV DR
pAvt , btq “ sup

mtPR

”

u

ˆ

ĈpAvt , btq ´
λmt

r ` λ

˙

`

ˆ

Āpr;λq `
λpbt `mtq

r ` λ

˙

V DR
A pAvt , btq

ı

` pµ´ λbtqV
DR
b pAvt , btq `

1
2
σ2V DR

bb pA
v
t , btq.[6.9]

Routine analysis of [6.9] then yields a full characterization of the agent’s optimal strategy:
since the supremum in [6.9] is uniquely attained by setting mt “ 0, the agent’s unique
optimal strategy is to truthfully report his current endowment at every history.48 It
follows that the given DR-SIC with interest rate r is Mr

ext-IC.
This proof implies that the agent truthfully reports his current type bt (by setting

46Strulovici (2022) uses a related argument to analyze IC for an equivalent class of renegotiation-proof
contracts (see Section 5.4). A notable technical difference is that Strulovici (2022) casts the agent’s
reporting problem as one of impulse-control, viewing m as a state variable (as in PPI’s treatment) and ∆
as an extended-real-valued control variable, with infinite values of ∆ corresponding to jumps in m. Our
approach of viewing m as a control variable parallels our treatment of the agent’s self-insurance problem
(in which consumption, which has the same units as m, is a control variable), and facilitates connections
to discrete-time reporting problems (see the discussion below and in Section 7.3).

47The details are analogous to those from our derivation of the agent’s self-insurance solution
(Lemma 5.1) in Appendix E. The fact that V DR satisfies [6.8] with V̂ DR ă 0 (rather than V̂ DR “ 0)
follows for Lemma E.1, with [NP-m] replacing [NP-A]. That V DR satisfies [6.9] follows from standard
results in stochastic control (Yong and Zhou 1999, Theorem 3.3; Touzi 2018, Propositions 2.4-2.5).

48Plugging [6.8] into the first-order condition from [6.9] yields that the agent’s unique maximizer at
state pAvt , btq, call itm‹pAvt , btq, satisfies V̂ DR “ ´r´1 exp

”

θ
´

Āpr;λq ` λ
r`λm

‹pAvt , btq
¯ı

. Plugging this
expression back into [6.9] yields that V̂ DR “ ´r´1 exp

`

θĀpr;λq
˘

(which equals V̂ SI from [5.10]) and
that m‹pAvt , btq “ 0, as desired. One can then verify that the implied strategy is optimal by following the
same verification argument from the proof of Lemma 5.1 (see Appendix E).
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mt “ 0) even at off-path histories where he has recently misreported (limεŒ0mt´ε ‰ 0),
requiring him to submit a discontinuous “jump” report. This implication is natural
from two perspectives. First, in terms of the indirect implementation, it simply means
that the agent immediately “re-initializes” his actual consumption cmt at the optimal
level ĈpAvt , btq prescribed by Lemma 5.1. Second, it is well known that in discrete-time
“Markovian” contracting problems, a contract is IC if and only if it satisfies the (seemingly
stronger) property that the agent finds it optimal to truthfully report at all histories, both
on- and off-path.49 The strategy derived here exhibits the continuous-time version of
this property, highlighting a close connection between discrete- and continuous-time
reporting problems that we expect is valid beyond PPI’s model (see Section 7.3 below).

7. Discussion

We conclude by discussing implications of our analysis for the fully optimal contract
in PPI’s hidden endowment model, long-run properties of optimal insurance contracts,
and the relation between discrete- and continuous-time contracting models.

7.1. Fully Optimal Contracts

Our analysis leaves open an important question: What is the fully optimal contract in
PPI’s hidden endowment model? The answer depends on whether endowment shocks
are transient (λ ą 0) or permanent (λ “ 0).

Transient Shocks. When λ ą 0, it is natural to ask whether the optimal SI Contract
is fully optimal. Theorem 7 in Appendix J suggests a negative answer: under regularity
conditions, the optimal SI Contract is strictly suboptimal within the broader class of
“FO-IC contracts,” i.e., the class of contracts for which the agent’s value function admits
an envelope formula.50 If the optimal FO-IC contract is actually IC (i.e., the first-order
approach is valid), it follows that the optimal SI Contract is not fully optimal. This
is to be expected: SI Contracts are renegotiation-proof and “stationary” (Section 5.4),
whereas prior work on contracting with persistent states has found that fully optimal
contracts typically violate both properties (e.g., Fernandes and Phelan 2000).

A full solution to PPI’s model with transient shocks remains an important open
question. While we do not know the answer, our analysis does have some implications

49In the special case of i.i.d. types, this fact forms the basis of the classic recursive formulations of
the agent’s incentive constraints in terms of promised utility (Green 1987; Thomas and Worrall 1990;
Atkeson and Lucas 1992). For settings with persistent private information, see Fernandes and Phelan
(2000, Lemma 2.1, Theorem 2.1) for an early treatment and Pavan, Segal, and Toikka (2014, pp. 620-22,
645-46) for a modern treatment and general definition of “Markovian” environments. This property does
not appear in PPI because it is ruled out by PPI’s IML assumption, as discussed in Section 4.1.

50See Appendix A for a formal definition. As discussed there, this class includes all contracts considered
in PPI’s analysis, and we conjecture that it includes all IC contracts.
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for it. We record them in Appendix A with the hope of stimulating work on this problem.

Permanent Shocks. When λ “ 0, Theorem 1 shows that Contract PPI is optimal
among SI Contracts. For this special case, Theorem 6 in Appendix J further shows that
Contract PPI is optimal among all FO-IC contracts. This confirms PPI’s results for the
λ “ 0 case (though we offer a simpler proof). The intuition mirrors that of Theorem 1(ii):
when λ “ 0, the principal cannot manipulate his risk exposure, and therefore focuses on
eliminating drift distortions. What is potentially surprising is that this logic extends to
the full class of FO-IC contracts.

In a more general setting, Bloedel, Krishna, and Strulovici (2022) provide an ex-
planation by observing that, under permanent shocks, the agent is necessarily indifferent
among (essentially) all reporting strategies under any FO-IC contract. Roughly speaking,
when the agent’s type is subject to permanent shocks, his information rents are “so large”
that the principal cannot elicit any useful information. By contrast, when the agent’s
type is mean-reverting—even arbitrarily slowly—nontrivial screening and risk-sharing
is possible because the agent’s private information is “short-lived.”51 We conclude that
the nature of IC constraints under permanent shocks are, at least in some respects,
fundamentally different than under transient shocks (even as λŒ 0). It is therefore not
surprising that optimal contracts differ in these two cases, as well.

7.2. Immiseration and Persistence

Perhaps the most striking claim in PPI is that the classic immiseration property of (fully)
optimal insurance contracts breaks down in PPI’s model due to (i) the persistence of the
agent’s information and (ii) fundamental differences between IC constraints in discrete-
and continuous-time models. Our analysis demonstrates that this claim does not follow
from PPI’s results in the generic case of transient shocks (λ ą 0) because Contract PPI
is optimal only when shocks are permanent (λ “ 0). We address the role of persistence
here and turn to the role of continuous time in Section 7.3 below.

Transient Shocks. Theorem 3 in Appendix G shows that the optimal SI Contract
generates immiseration when persistence is low (λ ą λ) and bliss when persistence is
high (λ ă λ). Because SI Contracts are not fully optimal when λ ą 0 (under regularity
conditions), this finding does not have direct implications for the fully optimal contract.
In a general discrete-time setting, Bloedel, Krishna, and Leukhina (2021) find that
fully optimal contracts generate immiseration when the agent’s private type follows a
finite-state, fully-connected Markov process. As their model permits arbitrarily good
approximations of PPI’s hidden endowment model, it is natural to expect that the fully

51For any λ ą 0, the influence of the agent’s time-t type has a vanishing influence on his time-τ type as
τ Ñ8 (recall Footnote 10), so that the principal and agent have “almost symmetric” information over
the agent’s time-τ preferences.
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optimal contract in PPI’s model may also generate immiseration for all λ ą 0. Further
investigation of this question is an important direction for future research.

Permanent Shocks. When λ “ 0, immiseration fails under the optimal FO-IC contract
(Contract PPI). We view this as a knife-edge result specific to λ “ 0. The literature often
attributes immiseration to the principal’s manipulation of the agent’s risk exposure for
cost-smoothing purposes (see BKL for details). Lemma J.1 in Appendix J formalizes a
sense in which the principal can manipulate the agent’s risk exposure if and only if λ ą 0.
Thus, when λ “ 0, the classic rationale for immiseration is shut off by construction.52

7.3. Continuous vs. Discrete Time

A central claim in PPI is that (i) there is a fundamental difference between reporting
incentives in discrete- and continuous-time models and (ii) this difference is at least
partially responsible for the differences between Contract PPI and optimal contracts
derived in the prior literature. This claim is based on the observation that, in PPI’s model,
the agent’s time-t choice of ∆t affects his future misreports mτ and actual consumption
cmτ for τ ą t, but does not affect the current misreport mt or consumption cmt , which
apparently stands in contrast to discrete-time models in which the agent can freely choose
his current misreport and therefore affect his current consumption.53 While the latter
observation is correct, our analysis supports neither component of PPI’s claim.

(i) Reporting Incentives. As discussed in Section 6.4, our direct verification of IC
for DR-SICs suggests fundamental similarities between reporting incentives in discrete-
and continuous-time models. We showed there how to “extend” the agent’s strategy
space (and the contract’s responses) to allow for discontinuous “jump” reports. In the
extended problem, as in discrete-time models, the agent directly chooses his misreport
mt at time t and instantaneously affects his time-t consumption cmt . We also described
why considering such “extensions” is without loss of generality for the purposes of
verifying IC, and why the agent’s incentive to truthfully report his current type even
at off-path histories—familiar from discrete-time models—makes such “extensions”
particularly natural in continuous time.

52In a more general setting with permanent shocks, Bloedel, Krishna, and Strulovici (2022) show that
the optimal long-run properties depend on details of the agent’s type process and utility function.

53For instance, PPI writes (p. 1235): “[T]hese differences [between Contract PPI and the optimal
contract in Thomas and Worrall (1990)] rely at least partly on differences in the environments. In the
discrete [time] analogue of my model, when deciding what to report in the current period, the agent
trades off current consumption and future promised utility. In my continuous-time formulation, the agent’s
private state follows a process with continuous paths and the principal knows this. Thus in the current
period the agent only influences the future increments of the reported state. Thus current consumption is
independent of the current report and all that matters for the reporting choice is how future transfers are
affected . . . [T]he reporting problem and, hence, the incentive constraints become fully forward-looking
. . . ” Similar statements are made elsewhere in PPI (pp. 1239, 1257-58, 1263, 1264).
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In Appendix I, we show how to directly analyze the agent’s reporting problem in
DR-SICs while maintaining PPI’s original assumption that misreports have absolutely
continuous sample paths (m PM). Under this assumption, the agent can still approximate
the effect of a jump report at time t through a sequence of strategies in M by sending
|∆τ | Ñ 8 for a vanishing interval of times τ ą t. Intuitively, although the agent can no
longer instantaneously affect his misreport mt or his consumption cmt , he can still affect
these variables at arbitrarily close times τ ą t, and finds it optimal to do so because
DR-SICs respond similarly to “jump” reports and such “approximate jump” reports (see
Appendix B). While the details of this argument are specific to PPI’s model and the class
of DR-SICs, we expect that the basic points apply more broadly in other continuous-time
contracting models. Consequently, our analysis suggests that the differences between
discrete- and continuous-time models identified in PPI (see Footnote 53) are cosmetic,
rather than substantive.54

(ii) Optimal Contracts. Our results extend to the natural discrete-time analogue of
PPI’s hidden endowment model in which the agent’s endowment follows a Gaussian
AR(1) process. Observation 1 plainly extends. For Observations 2–3 and the associated
analysis of SI Contracts, recall that our solution to the agent’s self-insurance problem
(Lemma 5.1) is the continuous-time limit of Caballero’s (1991) and Wang’s (2003)
discrete-time self-insurance solutions. Thus, we can replicate our analysis of SI Contracts
and DR-SICs in discrete time, using those papers’ solutions to construct the discrete-time
SI Contracts and defining the discrete-time version of Contract PPI as the particular
one with zero taxes. Discrete-time versions of Observations 2–3 and Theorems 1 and 2
readily follow. Consequently, any differences between Contract PPI and the optimal
contracts in the discrete-timemodels on which PPI’s model is based (Thomas andWorrall
1990; Atkeson and Lucas 1992) are not driven by the distinction between discrete and
continuous time. Rather, the discrete-time analogue of Contract PPI is also generically
suboptimal in the discrete-time version of PPI’s model.55

Appendix

Appendices A–B are presented here. Appendices C–K are in the Online Appendix.

A. PPI’s Derivation of Contract PPI

We begin with a few (sometimes implicit) definitions from PPI, stated in our terminology.
By the Martingale Representation Theorem, the agent’s promised utility process (defined

54Future work might explore more general connections between discrete- and continuous-time screening
problems by studying discrete-time models with vanishing period length (cf. Sadzik and Stacchetti 2015).

55Our finding that Contract PPI is optimal in an alternative model with hidden savings extends to
discrete time by the same logic described above. Our confirmation that Contract PPI is optimal under
permanent shocks extends to discrete time per a special case of Bloedel, Krishna, and Strulovici (2022).
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in [3.1]) under any contract satisfies

[A.1] dqt “ pρqt ´ utq dt` γtσ dW y
t ,

where W y is the “inferred shock process” under reporting strategy y (as defined in
Section 3) and γ is a y-adapted sensitivity process determined by the contract. Recall
the agent’s marginal promised utility process p from [3.2]. The condition

γt ` pt ” 0.[FO-IC]

corresponds to the familiar envelope formula for the agent’s information rents: it equates
the marginal value γt of an increase in the agent’s report and the marginal value ´pt
of an increase in the agent’s true type. Any contract that satisfies [FO-IC] is said to be
first-order IC (FO-IC). The class of FO-IC contracts includes all DR-SICs (which satisfy
[FO-IC] with pt ” fpr;λqqt) and all other contracts allowed for in PPI’s treatment.56,57
We say that a contract is an optimal FO-IC contract if it minimizes the principal’s lifetime
cost under truthtelling (as in [2.2]) among all FO-IC contracts delivering a pre-specified
promised utility level. Note that an FO-IC contract, including the optimal one, need not
be IC.

Standing Assumption. For the remainder of this appendix, we focus on the generic
case of PPI’s hidden endowment model with transient shocks (λ ą 0).

PPI’s Claims. PPI’s claim that Contract PPI is the optimal MLAC
ď -IC contract can be

decomposed into three sub-claims:

56§3 of PPI claims (in a general finite-horizon setting) that all IC contracts are FO-IC, and we conjecture
that this is indeed the case in PPI’s hidden endowment model. The basic idea is to show that [FO-IC] is
implied by [IC] by deriving the former as an infinitesimal optimality condition for the agent that rules out
“local” deviations from truthtelling. Technically, this requires appealing to the envelope theorem (e.g.,
Kapička 2013; Pavan, Segal, and Toikka 2014), the stochastic maximum principle (as in PPI, pp. 1243-44,
1264), or other variational arguments to establish that such infinitesimal conditions are well-defined.
The usual approach in the literature is to allow for all conceivable contracts while imposing regularity
conditions on the agent’s type process and preferences to ensure that such arguments are applicable
(e.g., Pavan, Segal, and Toikka 2014, Theorem 1). However, to our knowledge, the agent’s CARA utility
function in the present model does not satisfy regularity conditions found in the literature because it
is unbounded below and does not satisfy standard growth conditions. To avoid these purely technical
considerations, we simply restrict attention to the class of FO-IC contracts.

57PPI initially states a weaker version of [FO-IC] requiring only that γt ` pt ě 0 (display (10) on p.
1244), which is the appropriate “one-sided” envelope formula when either NHB (m ď 0) or IML (∆ ď 0)
is imposed. However, PPI’s entire analysis of optimal contracts (§§5-8) is based on the version of [FO-IC]
stated above. In §5, PPI writes (p. 1250): “We now assume that the incentive constraint . . . binds, so that
γ “ ´p. We relax this condition in an example below and verify that it holds. However, we also conjecture
that it holds more generally.” PPI does not carry out the asserted verification, instead relying on γ “ ´p
throughout §§5-8. Nonetheless, at least in the special case of permanent shocks (λ “ 0) this restriction is
indeed without loss of optimality (Remark J.2 in Appendix J.2).
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• Claim 1: Contract PPI is the optimal FO-IC contract.
• Claim 2: Contract PPI is MLAC

ď -IC.
• Claim 3: The optimal MLAC

ď -IC contract is FO-IC.
Below, we identify issues with each of these claims and where they arise in PPI.58

PPI’s Argument for Claim 1. §5 of PPI presents an HJB equation for the principal’s
value function over [FO-IC] contracts in the infinite-horizon setting (see display (19)
on p. 1249 and the first-order conditions in displays (24)–(25) on p. 1251). PPI then
presents the main derivation of Contract PPI in §6.2.1 and §6.2.2 (pp. 1252-54) and
§A.3.1 (pp. 1269-71). The main steps of that derivation are as follows:
Step 1. Conjecture that the principal’s value function at time t—which in general can be
written as a function Jpyt, qt, ptq—depends on marginal promised utility pt (as defined
in [3.2]) only through the ratio kt “ pt{qt. Also conjecture that the dependence on kt is
additively separable, viz., Jpyt, qt, ptq “ Ĵpyt, qtq`hpktq for some functions Ĵ and h (see
display (26) on p. 1252).
Step 2. Assume that hp¨q is smooth, plug the conjectured form of the value function from
Step 1 into the principal’s HJB equation. This delivers a second-order ODE for hp¨q (see
display (A.11) on p. 1269).
Step 3. Use the policy functions derived from the HJB equation, together with Itô’s
lemma, to conclude that the resulting k process must satisfy a particular law of motion
(display (28) on p. 1253).
Step 4. Numerically solve the ODE for hp¨q derived in Step 2, plot the solution for specific
parameter values, graphically observe that hp¨q appears to be minimized at the value
k˚0 “ θλ{pρ` λq, and conclude that k˚0 is the optimal initial condition for the k process
(pp. 1270-71). (Recall that the initial conditions q0 and y0 “ b0 are given, while the
principal’s choice of FO-IC contract determines p0.)
Step 5. Observe that, given the law of motion from Step 3 and the initial condition k˚0
from Step 4, the k process is necessarily constant. Conclude from this that the policy
function from the HJB generates Contract PPI, and therefore that Contract PPI is the
optimal [FO-IC] contract (see pp. 1253-54).

Issues with Claim 1. In Appendix J (see Remark J.10), we verify that Steps 1–3 and
Step 5 above are correct as stated (while also showing that PPI’s conjectures in Step 1
can be derived from first principles, and making explicit some technical assumptions
that PPI makes implicitly). Meanwhile, Theorem 1 establishes the existence of an FO-IC

58Recall from Section 4.2 that PPI does not fully specify the agent’s strategy space in the infinite-horizon
setting of §§5–8, so we adopt our best understanding of PPI’s assumptions, which is that the agent’s
feasible set is F “MLAC

ď . Claim 1 and the issues that we identify with it are independent of this convention,
as the class of FO-IC contracts is defined independently of the agent’s feasible set.
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contract that strictly dominates Contract PPI.59 It follows that PPI’s conclusion in Step
4—that k˚0 is the optimal initial condition—is incorrect. We also note that PPI also does
not specify boundary conditions for the ODE for hp¨q in Step 4; it is therefore unclear
what ODE system the numerical solution in Step 4 pertains to.

Issues with Claims 2–3. These follow from discussion above:
• In Section 4.2, we describe issues with PPI’s argument for Claim 2. We also show that
Claim 2 is false by constructing a strategy m PMLAC

ď that the agent strictly prefers to
truthtelling (Observation 2).

• In Footnotes 56 and 57 above, we describe how PPI (i) initially presents a weaker
“one-sided” version of [FO-IC], (ii) claims that it is satisfed by everyMLAC

ď -IC contract
in the finite-horizon setting, (iii) restricts attention to FO-IC contracts (as defined
here) when studying optimal contracts in the infinite-horizon setting, and (iv) does
not actually verify that this restriction is without loss of optimality. Consequently,
PPI does not establish Claim 3. We nonetheless conjecture that Claim 3 is true.

Implications for the Optimal FO-IC Contract. Through Steps 1–3 above, PPI de-
rives two correct properties of the optimal FO-IC contract.60 Taking b0 and q0 as given,
let k:0 P R`` denote the true optimal initial condition for the process kt :“ pt{qt. First,
PPI finds that the principal’s optimal lifetime cost is

[A.2] Jpb0, q0, k
:

0q0q “ J˚pb0, q0q `
σ2

2ρ2θ

´

k:0

¯2

,

where J˚pb0, q0q is the first-best value function (recall Footnote 35). Second, PPI finds
that the agent’s initial recommended consumption is

[A.3] c:0 “ cpq0, ρq,

where cpq0, ρq “ ´ logp´ρq0q{θ. Note that Contract PPI specifies the same initial condi-
tion for recommended consumption. Taken together, our results and [A.2]–[A.3] have the
following implications for the optimal FO-IC contract:61
1. The initial condition satisfies k:0 ă k˚0 , where k˚0 “ ρθ{pρ` λq is the initial condition

for Contract PPI. This holds because the principal’s cost of Contract PPI (stated in
[5.13]) can be expressed as J˚pb0, q0q `

σ2

2ρ2θ
pk˚0 q

2, our Theorem 1 and the fact that SI

59Theorem 2 shows that the contract we identify in Theorem 1 is IC in a suitable sense, but this is not
relevant for the present discussion of FO-IC contracts.

60See the calculations on pp. 1269–71 in §A.3.1 of PPI, which assume that hp¨q is twice continuously
differentiable and satisfies h2pk:0q ą 0. We maintain these assumptions in the discussion here.

61We emphasize that our results, [A.2]–[A.3], and the implications below are mutually consistent
because our DR-SICs correspond to the strict subset of FO-IC contracts that are “stationary” (viz., feature
a constant kt “ pt{qt process). See Section 5.4, and Lemma G.1 in Appendix G.
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Contracts are FO-IC imply that this cost is strictly greater than Jpb0, q0, k
:

0q0q, the
kt “ pt{qt process is strictly positive, and hence [A.2] implies k˚0 ą k:0.

2. At t “ 0, we have dkt “ pρ` λq
“

k:0 ´ k
˚
0

‰

dt ă 0. The expression for dk0 follows from
substituting h1pk:0q “ 0 into the expressions for ĉpk:0q and Q̂pk

:

0q on pp. 1269–70 of
PPI, and then substituting those expressions into display (28) on p. 1253 of PPI. The
strict inequality follows from the first implication above.

Further analysis of the optimal FO-IC contract is an exciting direction for future research.

B. On the Agent’s Reporting Problem in DR-SICs

When the agent’s feasible set is F Ď M, his reporting problem can be cast as one
of stochastic control with states pAvt , yt,mtq and control ∆t, as in PPI. For a DR-SIC
with rate r ą 0, V NJpAvt , yt,mtq denotes the agent’s value function under the “no jump”
feasible set F “Mr; as in Section 6.4, V DRpAvt , yt´mtq denotes that under the extended
feasible set F “ Mr

ext (where we have used the identity bt ” yt ´mt). We show that
these two value functions coincide, i.e., the agent does not strictly benefit from having
access to jump reports (as in the treatment of IC from Section 6) either on- or off-path.
(In Appendix I, we directly analyze the “no jump” reporting problem.)

Lemma B.1. For any DR-SIC with rate r ą 0, the agent’s value functions satisfy

[B.1] V DR
pAvt , yt ´mtq ” V NJ

pAvt , yt,mtq ” qt exp rfpr;λqmts .

Proof. By construction, qt ” V SIpAvt , ytq. Thus, [5.10], [6.8], and the identity mt ”

yt ´ bt yield V DRpAvt , yt ´ mtq ” qt exp rfpr;λqmts. Next, Mr Ĺ Mr
ext implies that

V NJpAvt , yt,mtq ď qt exp rfpr;λqmts. If mt “ 0, the upper bound is trivially attained; for
mt ‰ 0, we show its attainment via an approximation argument. Let pAvt , yt,mtq with
mt ‰ 0 be a state at time t in the agent’s reporting problem with (non-extended) feasible
set Mr. For any continuation strategy m PMr and time T ą t, integrating [A.1] (with
uτ ” rqτ and γτ ” ´fpr;λqqτ ) over τ P rt, T s delivers

[B.2] qT “ q̂T ¨ exp

„

fpr;λq

ˆ

pmt ´mT q ` λmtpT ´ tq ´ λ

ż T

t

mτdτ

˙

,

where q̂T is the counterfactual time-T promised utility that would have arisen under
the same endowment shocks pWτ qτPrt,T s had the agent set ∆τ ” 0 on τ P rt, T s.62

62Fix the path pmτ qτPr0,tq. Under the continuation strategy m, the “inferred shock process” satisfies
σW y

T “ σWT ` mT ` λ
şT

0
mτdτ . Under the continuation strategy ∆τ ” 0 for all τ P rt, T s, the

corresponding process, call it Ŵ y, satisfies σŴ y
T “ σWT `mt ` λ

şt

0
mτdτ ` λmtpT ´ tq. Integrating

[A.1] (with uτ ” rqτ and γτ ” ´fpr;λqqτ ) from the fixed initial condition qt “ V SIpAvt , yt ´mtq over
τ P rt, T s under both strategies yields qT “ q̂T exp

”

fpr;λqσ
´

Ŵ y
T ´W

y
T

¯ı

, which reduces to [B.2].
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For each T ą t, consider the specific continuation strategy mT P Mr induced by
∆T
τ :“ ´mt{pT ´ tq ¨ 1pτ P rt, T sq. Under mT , [B.2] reduces to

[B.3] qT “ q̂T ¨ exp rfpr;λqmts ¨ exp

„

´λfpr;λqmt ¨
pT ´ tq

2



.

As T Œ t,mT approximates an instantaneous jump tomt` “ 0 and truthful reporting for
all τ ą t (the optimal continuation strategy from the extended problem in Section 6.4);
we have q̂T Ñ q̂t “ qt and thus qT Ñ qt exp rfpr;λqmts P-a.s. Furthermore, because mT

specifies truthful reporting for τ ě T , qT is also the agent’s true time-T continuation
utility. It follows that V NJpAvt , yt,mtq ě qt exp rfpr;λqmts, as desired.

Remark B.2. Lemma B.1 and its proof have a few notable implications:
(i) Recommended consumption satisfies ct ” cpqt, rq, so sending T Œ t in [B.3] also im-

plies that the agent’s recommended and actual consumption (hence, also the transfers
st) converge to those under the optimal extended strategy from Section 6.4.

(ii) Because V NJ “ V DR and the latter value function is uniquely attained by the optimal
“report truthfully at all histories” strategy from Section 6.4—which is not in Mr—it
follows that when the agent’s feasible set is Mr, he does not have a well-defined
optimal continuation strategy at off-path histories where mt ‰ 0. At such histories,
the only way to attain continuation value V DRpAvt , yt ´mtq is to approximate a jump
report back to mt “ 0, as in the above proof.

(iii) By restricting attention to mt ď 0, the arguments here and in Section 6.4 apply
almost verbatim when NHB is imposed, i.e., the agent’s feasible set isMr

´. Given this
feasible set, the agent’s value function is therefore V NHBpq,mq “ q exp rfpr;λqms

as in [B.1], but restricted to the domain where m ď 0. As noted in Section 4.1, for
Contract PPI (r “ ρ), this differs from the agent’s value function when the stronger
[IML] constraint is imposed (cf. [4.1]).

References

Acciaio, Beatrice, Robert A. Crowell, and Jakša Cvitanić. 2022. “A Note on Persistent
Private Information”. Working paper.

Allen, Franklin. 1985. “Repeated Principal-Agent Relationships with Hidden Lending
and Borrowing”. Economics Letters 17 (1-2): 27–31.

Atkeson, Andrew, and Robert E. Lucas Jr. 1992. “On Efficient Distribution with Private
Information”. Review of Economic Studies 59 (3): 427–453.

Battaglini, Marco, and Rohit Lamba. 2019. “Optimal Dynamic Contracting: The First-
Order Approach and Beyond”. Theoretical Economics 14 (4): 1435–1482.

42



Bloedel, Alexander W., R. Vijay Krishna, and Oksana Leukhina. 2018. “Insurance and
Inequality with Persistent Private Information”.Working paper, Stanford University
and Federal Reserve Bank of St. Louis.

— . 2021. Insurance and Inequality with Persistent Private Information. Tech. rep.
Federal Reserve Bank of St. Louis.

Bloedel, Alexander W., R. Vijay Krishna, and Bruno Strulovici. 2022. “On the Limits
of Dynamic Screening under Permanent Shocks”.

Caballero, Ricardo J. 1990. “Consumption Puzzles and Precautionary Savings”. Journal
of Monetary Economics 25 (1): 113–136.

— . 1991. “Earnings Uncertainty and Aggregate Wealth Accumulation”. American
Economic Review: 859–871.

Chamberlain, Gary, and Charles A. Wilson. 2000. “Optimal Intertemporal Consumption
under Uncertainty”. Review of Economic Dynamics 3 (3): 365–395.

Chen, Yi. 2021. “Dynamic Delegation with a Persistent State”. Theoretical Economics,
no. forthcoming.

Cisternas, Gonzalo. 2017. “Two-sided Learning and the Ratchet Principle”. Review of
Economic Studies 85 (1): 307–351.

Cole, Harold L., and Narayana R. Kocherlakota. 2001. “Efficient Allocations with Hidden
Income and Hidden Storage”. Review of Economic Studies 68 (3): 523–542.

Cvitanić, Jakša, and Jianfeng Zhang. 2012. Contract Theory in Continuous-Time Models.
Springer Science & Business Media.

DeMarzo, Peter M., and Yuliy Sannikov. 2016. “Learning, termination, and payout
policy in dynamic incentive contracts”. Review of Economic Studies 84 (1): 182–
236.

DeMarzo, Peter M, and Yuliy Sannikov. 2006. “Optimal security design and dynamic
capital structure in a continuous-time agency model”. The journal of Finance 61
(6): 2681–2724.

Doepke, Matthias, and Robert M Townsend. 2006. “Dynamic Mechanism Design with
Hidden Income and Hidden Actions”. Journal of Economic Theory 126 (1): 235
–285.

Edlin, Aaron S., and Chris Shannon. 1998. “Strict monotonicity in comparative statics”.
Journal of Economic Theory 81 (1): 201–219.

Farhi, Emmanuel, and Iván Werning. 2013. “Insurance and Taxation over the Lifecycle”.
Review of Economic Studies 80 (2): 596–635.

Fernandes, Ana, and Christopher Phelan. 2000. “A Recursive Formulation for Repeated
Agency with History Dependence”. Journal of Economic Theory 91:223–247.

43



Golosov, Mikhail, Narayana R. Kocherlakota, and Aleh Tsyvinski. 2003. “Optimal
Indirect and Capital Taxation”. Review of Economic Studies 70 (3): 569–587.

Golosov, Mikhail, Aleh Tsyvinski, and NicolasWerquin. 2016. “Recursive Contracts and
Endogenously Incomplete Markets”. In Handbook of Macroeconomics, Volume 2.

Green, Edward J. 1987. “Lending and the Smoothing of Uninsurable Income”. In
Contractual Agreements for Intertemporal Trade, ed. by Edward C. Prescott and
Neil Wallace. University of Minnesota Press.

He, Zhiguo, Bin Wei, Jianfeng Yu, and Feng Gao. 2017. “Optimal Long-Term Contract-
ing with Learning”. Review of Financial Studies 30 (6): 2006–2065.

Kapička, Marek. 2013. “Efficient allocations in dynamic private information economies
with persistent shocks: A first-order approach”. The Review of Economic Studies:
rds045.

Karatzas, Ioannis, and Steven E. Shreve. 1998. BrownianMotion and Stochastic Calculus.
Second Edition. New York, NY: Springer.

Katzourakis, Nikos. 2015. An introduction to viscosity solutions for fully nonlinear PDE
with applications to calculus of variations in L. Springer.

Kocherlakota, Narayana R. 2010. The New Dynamic Public Finance. Princeton, NJ:
Princeton University Press.

Ljunqvist, Lars, and Thomas J. Sargent. 2000. Recursive Macroeconomic Theory. 1st
ed. Cambridge, Ma: MIT Press.

Mörters, Peter, and Yuval Peres. 2010. Brownian Motion. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press.

Oksendal, Bernt, and Agnes Sulem. 2019. Applied Stochastic Control of Jump Diffusions.
Third. Springer.

Pavan, Alessandro, Ilya Segal, and Juuso Toikka. 2014. “Dynamic Mechanism Design:
A Myersonian Approach”. Econometrica 82 (2): 601–653.

Pham, Huyên. 2009. Continuous-Time Stochastic Control and Optimization with Finan-
cial Applications. Berlin: Springer-Verlag.

Phelan, Christopher. 1998. “On the Long Run Implications of Repeated Moral Hazard”.
Journal of Economic Theory 79:174–191.

Prat, Julien, and Boyan Jovanovic. 2014. “Dynamic contracts when the agent’s quality
is unknown”. Theoretical Economics 9 (3): 865 –914.

Ramos, Joao, and Tomasz Sadzik. 2019. “Partnership with Persistence”. Available at
SSRN 3308865.

Sadzik, Tomasz, and Ennio Stacchetti. 2015. “Agency Models with Frequent Actions”.
Econometrica 83 (1): 193–237.

44



Sannikov, Yuliy. 2014. Moral hazard and long-run incentives. Tech. rep. Princeton
University.

Sotomayor, Marilda. 1984. “On Income Fluctuations and Capital Gains”. Journal of
Economic Theory 32 (1): 14–35.

Stokey, Nancy L., Robert E. Lucas Jr, and Edward C. Prescott. 1989. Recursive Methods
in Economic Dynamics. Cambridge, Ma: Harvard University Press.

Strulovici, Bruno. 2022. Renegotiation-Proof Contracts with Persistent States. Tech. rep.
Northwestern University.

— . 2011. Renegotiation-proof Contracts with Moral Hazard and Persistent Pri-
vate Information. Tech. rep. Center for Mathematical Studies in Economics and
Management Science.

Thomas, Jonathan P., and Tim Worrall. 1990. “Income Fluctuation and Asymmetric
Information: An Example of a Repeated Principal-Agent Problem”. Journal of
Economic Theory 51:367–390.

Touzi, Nizar. 2018. “Stochastic Control and Application to Finance”. Manuscript, Ecole
Polytechnique Paris.

Wang, Neng. 2003. “Caballero meets Bewley: The Permanent-Income Hypothesis in
General Equilibrium”. American Economic Review 93 (3): 927–936.

— . 2006. “Generalizing the permanent-income hypothesis: Revisiting Friedman’s
conjecture on consumption”. Journal of Monetary Economics 53 (4): 737–752.

— . 2004. “Precautionary saving and partially observed income”. Journal of Monetary
Economics 51 (8): 1645–1681.

Williams, Noah. 2011. “Persistent Private Information”. Econometrica 79 (4): 1233–
1275.

Yong, Jiongmin, and Xun Yu Zhou. 1999. Stochastic Controls: Hamiltonian Systems
and HJB Equations. Vol. 43. Springer Science & Business Media.

Zhang, Yuzhe. 2009. “Dynamic Contracting with Persistent Shocks”. Journal of Eco-
nomic Theory 144:635–675.

45



Online Appendix
to Persistent Private Information Revisited

Appendices C–K present technical proofs and secondary results omitted from the main
paper. Most of this material is presented in the same order that it is mentioned in the
main text; Appendix K collects auxiliary mathematical facts.

C. Facts about AC Change-of-Measure

Following PPI (p. 1239) and Karatzas and Shreve (1998, p. 59), we view P˚ and Pm as
probability measures on the space Cr0,8q of continuous paths. There exists a density
process Γmt ” dPmt {dP˚t iff m PMLAC. By Karatzas and Shreve (1998, p. 191): (a) Γm

is a continuous P˚-local martingale and can be expressed as1

Γmt ” exp

„
ż t

0

p∆τ ` λmτ q

σ
dW y

τ ´
1

2

ż t

0

p∆τ ` λmτ q
2

σ2
dτ



,

where W y is a standard Brownian motion under P˚;2 (b) m P MLAC iff Γm is a P˚-
martingale; and (c) m PMGAC iff Γm is a uniformly integrable (UI) P˚-martingale, in
which case there exists an infinite-horizon density Γm8 :“ dPm {dP˚ and Γmt Ñ Γm8
P˚-a.s. These facts imply that the strategies constructed in the proofs of Observations
1–2 are in the claimed feasible sets. Furthermore, as claimed in Sections 2.2 and 4.2:

Fact 3. The following hold:
(i) If λ ą 0, every m PMGAC

ď satisfies mt ” 0.
(ii) MGAC

: ĎMLAC
: XMr

: for all : P tď,´u and r ą 0.

Proof. Part (i): Suppose there exists m P MGAC
ď ztm˚ ” 0u. Then Γmt ” exppXt ´

1
2
xXytq is a UI P˚-martingale, where Xt :“

şt

0
p∆τ`λmτ q

σ
dW y

τ is a martingale and xXyt “
şt

0
p∆τ`λmτ q2

σ2 dτ is its quadratic variation. On the event tm ı 0u, we have limtÑ8 xXyt “

8 because m is nonincreasing. Thus, there exists a time-changed Brownian motion B
such that Xt “ BxXyt (see Theorem 4.6 and Problem 4.7 in Karatzas and Shreve (1998,
Ch. 3)). The SLLN for Brownian motion implies that limtÑ8Xt{ xXyt “ 0, so on the
event tm ı 0u we have Γm8 “ limtÑ8 exp

“

xXyt
`

Xt{ xXyt ´
1
2

˘‰

“ 0. Hence, Γm8 ň 1 on
C pr0,8qq and therefore Pm pC pr0,8qqq ă 1, a contradiction.
Part (ii): Trivially,MGAC

: ĎMLAC
: . The inclusionsMGAC

: ĎMr
: follow from y being a P˚-

OU process, Lemma K.3(iii) in Appendix K, and the definitions [GAC] and [NP-m].

1This formula presumes that
şt

0
p∆τ`λmτ q

σ dW y
τ is well-defined (e.g., ∆` λm P L2

loc).
2As in Section 3, dW y

t :“ 1
σ rdyt ´ pµ´ λytqdts, which is a P˚-Brownian motion by definition

of P˚. When using the “weak formulation” of the agent’s reporting problem to conduct change-of-
measure (see Cvitanić and Zhang (2012)), PPI denotesW y byW˚ and the processW that drives b by
W∆
t ”W˚

t ´
şt

0

`

∆τ`λmτ
σ

˘

dτ . We maintain the (equivalent) notationW y andW for simplicity.
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D. PPI’s Su�icient Conditions for IC

Theorem 4.1 in §4 of PPI presents sufficient conditions under which the first-order
approach from §3 is valid in the finite-horizon setting from §2. That is, fixing a finite
horizon r0, T s, PPI’s Theorem 4.1 offers conditions under which we can conclude that a
given contract is IC, assuming that (i) the agent’s feasible set consists of all reporting
strategies satisfying IML and finite-horizon AC change-of-measure (PmT ! P˚T ), and (ii)
the contract satisfies the equation [A.1] for q, the downward FO-IC condition γt ` pt ě 0

(cf. Footnote 57), and the equation [J.3] for p (see also pp. 1244-45 in PPI). These
conditions take the form of inequalities (displays (17) and (18) on p. 1247) to be satisfied
by the y-adapted process Q “ pQtqtPr0,T s controlling the volatility of p in [J.3].

Issue 1: The proof of Theorem 4.1 requires IML. PPI presents the proof of Theorem
4.1 in §A.2 (pp. 1265-69). Three key steps of the proof rely on IML and would not go
through as stated under NHB alone.
(a) On p. 1267, PPI writes: “whenQt ď 0, then we have bothQtm

2
t ď 0 andQtmt∆t ď 0.”

The final inequality requires that mt∆t ě 0, which is implied by IML but can fail
under NHB (which permits mt ă 0 ă ∆t).

(b) Later on p. 1267, PPI writes: “Thus the optimality condition for truthtelling (∆t “ 0)
is Qtmt ` ξt ě 0,” where the inequality appears as display (A.9) and ξ is a co-
state process in the agent’s reporting problem. Direct inspection reveals that PPI’s
derivation of the inequality (A.9) from the preceding display (A.8) requires the IML
constraint ∆t ď 0. Without IML, to conclude that setting ∆t “ 0 in (A.8) is optimal
for the agent, one would need to strengthen (A.9) to the equality Qtmt ` ξt “ 0.
Furthermore, truthful reporting corresponds to mt “ 0 rather than ∆t “ 0; without
IML, under many FO-IC contracts—including all DR-SICs—the agent will find it
optimal to set∆t “ `8 in (A.8) whenmt ă 0 (see Sections 6 and 7.3 and Appendix I).

(c) The final two displays on p. 1268 and the first display on p. 1269 invoke the inequality
version of (A.9), and therefore also require IML. Without IML but maintaining the
equality version of (A.9) and PPI’s hypothesis that mτ “ mt for all τ ě t (middle
of p. 1268), the final two displays on p. 1268, in particular (A.10), would need to
hold as equalities. This is problematic because the inequality at the top of p. 1269,
which yields (17) in the statement of Theorem 4.1, is not sufficient to ensure that the
equality version of (A.10) holds. Furthermore, as noted in Point (b) above, without
IML the equality version of (A.9) and the hypothesis that mτ “ mt for all τ ě t are
both too demanding, so a different argument would be needed even if the equality
version of (A.10) could be addressed.

In summary, the proof of Theorem 4.1 would not go through as stated if IML were
weakened to NHB. We do not know whether the statement of Theorem 4.1 would remain
valid, but conjecture that it would not.
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Issue 2: The application of Theorem 4.1 to Contract PPI is incomplete. In §A.3.2
(p. 1271), PPI attempts to apply Theorem 4.1 to prove that Contract PPI is MLAC

ď -IC
when λ ą 0. This conclusion is false (Observation 2). There are two issues with PPI’s
argument:
(a) Theorem 4.1 pertains to the finite-horizon model, while Contract PPI arises in the

infinite-horizon model. PPI attempts to apply an infinite-horizon variant of Theorem
4.1 in which the key inequalities for the Q process (displays (17) and (18) on p. 1247)
are modified by replacing the terminal time T ă 8 with T “ 8 wherever the former
appears. PPI does not formally state or prove such a variant of Theorem 4.1.

(b) The proof of Theorem 4.1, as stated, does not extend to the infinite-horizon model
unless a sufficiently tight lower bound is imposed on the agent’s misreports. In
particular, it does not extend when the agent’s infinite-horizon feasible set is MLAC

ď .
To illustrate, we specialize to Contract PPI in the hidden endowment model. Following
PPI’s derivation of (A.4) on p. 1265, the agent’s lifetime utility gain V pmq ´ q0 from
using strategy m instead of truthfully reporting is

V pmq ´ q0 “ Em0

„
ż T

0

e´ρt rupct ´mtq ´ upctqs dt`

ż T

0

e´ρtγtdW
y
t



` e´ρT Em0

„
ż 8

T

e´ρpt´T qupct ´mtqdt´ qT



,

[D.1]

where [D.1] is an accounting identity that holds for all T ą 0.3 For a given T ą 0,
if the strategy m satisfies mt “ mT for all t ě T , then by the same logic as PPI’s
(A.5) on p. 1266, the second line of [D.1] is bounded above by e´ρT Em0 rpTmT s.4 This
yields the overall bound: for all T ą 0,

[D.2] V pmq ´ q0 ď Kps,m, T q ` e´ρT Em0 rpTmT s ,

where Kps,m, T q denotes the first expectation in [D.1]. After using PPI’s (A.4) to
substitute out e´ρTpTmT , [D.2] reduces to PPI’s (A.6), which is the basis for the rest
of PPI’s (finite-horizon) proof of Theorem 4.1. To adapt those later proof steps to
derive the infinite-horizon variant of Theorem 4.1 that PPI applies to Contract PPI
(viz., the infinite-horizon variant of (17) invoked on p. 1271), one must consider the

3[D.1] is the same as PPI’s (A.4), specialized to the hidden endowment model and with time-T
continuation payoffs in place of time-T terminal payoffs. As noted in Footnote 2, ourW y is PPI’sW˚.

4PPI’s (A.5) concerns pTmT at the terminal time T . With an infinite horizon, let
UT pmT q :“ EmTT

“ş8

T
e´ρpt´T qupct ´mT qdt

‰

denote the agent’s time-T continuation pay-
off under the continuation strategy mt ” mT . Then UT p¨q is smooth and concave, with
U 1pmT q “ ´EmTT

“ş8

T
e´pρ`λqpt´T qu1pct ´mT qdt

‰

. Concavity yields UT pmT q ´ UT p0q ď mTU
1
T p0q and

[3.1]–[3.2] imply that UT p0q “ qT and U 1T p0q “ pT . Taking expectations yields the desired upper bound.
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T Ñ 8 limit of [D.2]. This adaptation is meaningful only if5

[D.3] lim
TÑ8

e´ρT Em0 rpTmT s ă 8,

for otherwise subsequent calculations would involve expectations that are either
infinite or ill-defined. However, there exist strategies in MLAC

ď that violate [D.3]. In
particular, any deterministic strategy m P MLAC

ď that, for some fixed time T̂ ą 0,
satisfies mt “ M ă M :“ ´pρ ` λq{pθλq for all t ě T̂ violates [D.3].6 To see this,
recall that pt ” k˚0qt under Contract PPI (where k˚0 “ ρθ

ρ`λ
), and use [3.3] and the

identityW y
t ” Wt `

şt

0

`

λmτ`∆τ

σ

˘

dτ to write

pTmT “ k˚0q
˚
TmT exp

„

´k˚0

ˆ

mT ` λ

ż T

0

mtdt

˙

,

where q˚T :“ q0 exp
`

´1
2
pk˚0σq

2T ´ k˚0σWT

˘

is promised utility under truthful report-
ing. Thus, we have

lim
TÑ8

e´ρT Em0 rpTmT s “ p0M ¨ lim
TÑ8

exp

«

´ρT ´ k˚0

˜

M ` λMpT ´ T̂ q ` λ

ż T̂

0

mtdt

¸ff

“ p0Me
k˚0

´

λMpT̂´1q´λ
şT̂
0 mtdt

¯

¨ lim
TÑ8

exp r´T ¨ pρ` k˚0λMqs

“ 8,

where the first equality uses the facts that (a)m is deterministic and satisfiesmt “M

for all t ě T̂ and (b) Em0 rk˚0q˚T s “ k˚0q0 “ p0 because q˚ is a martingale, and the
last equality uses the fact that M ă M implies ρ ` k˚0λM ă 0. We conclude that
PPI’s argument for the infinite-horizon variant of Theorem 4.1 requires the additional
constraint that mt ěM for all t ě 0.

E. Proof of Lemma 5.1

Note that ĉ satisfies [5.2] and [NP-A] iff it satisfies the intertemporal constraint
ż 8

0

e´rtĉt dt ď

ż 8

0

e´rtbt dt` A0 P-a.s.[E.1]

Given any ξ P R, [E.1] implies the following properties: (i) ĉ P ApA0, b0q iff ĉ ` rξ P

ApA0 ` ξ, b0q, and (ii) ApA0, b0 ` ξq “ ApA0 ` ξ{pr ` λq, b0q. Property (i) is immediate.

5IML implies pTmT ą 0 for all T ě 0.
6One such strategy is mt ” maxtM,Mt{T̂ u; all such strategies, being eventually constant, satisfy the

hypothesis used above to derive [D.2] from [D.1]. Also, note the parallel to Section 4.2:M is the same
constant defined below [4.1] and the strategies considered here violate [TVC].
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Property (ii) follows from inserting the closed-form solution for bt (see Footnote 10)
into [E.1]. Using these facts, we can characterize the agent’s value function V SI from
[5.1] up to a parameter, γ P R, to be determined later.

Lemma E.1. Let ξ P R. The value function V SI : R2 Ñ R´´ satisfies:
(i) V SIpA0 ` ξ, b0q “ e´θrξV SIpA0, b0q.
(ii) V SIpA0, b0 ` ξq “ e´fpr;λqξV SIpA0, b0q.
(iii) V SIpA0, b0q “ ´ exp

`

´ θrpA0 ` b0{pr ` λq ` γq
˘

, where ´e´θrγ :“ V SIp0, 0q.

Proof. Fix pA0, b0q P R
2. Note that V SIpA0, b0q P R´´ is well-defined: V SIpA0, b0q ă 0

because up¨q ă 0 and [E.1] renders infeasible consumption processes approximating
ĉt ” `8, and V SIpA0, b0q ą ´8 because there exist ĉ P ApA0, b0q that deliver finite
lifetime utility to the agent.7 Point (i) follows from property (i) above, point (ii) follows
from property (ii) above and point (i), and point (iii) follows from points (i) and (ii).

Lemma E.1(iii) implies that V SI P C8pR2q. Thus, letting pAt, btq denote a generic state,
standard arguments imply that V SI is a classical solution to the HJB equation8

ρV SI
pAt, btq “ sup

ctPR

“

upctq ` prAt ` bt ´ ctqV
SI
A pAt, btq

‰

` pµ´ λbtqV
SI
b pAt, btq `

1
2
σ2V SI

bb pAt, btq.
[E.2]

This allows us to determine γ and the optimal (Markovian) control.

Lemma E.2. The following hold:
(i) The parameter γ P R from Lemma E.1(iii) is

γ “
µ

rpλ` rq
`

logprq

rθ
´

«

r ´ ρ

θr2
`

1

2

pfpr;λqσq2

θr2

ff

.[E.3]

(ii) The supremum in [E.2] at state pAt, btq is uniquely attained by

ĈpAt, btq :“ rAt `
r

λ` r
bt `

µ

λ` r
´

«

r ´ ρ

θr
`

1

2

pfpr;λqσq2

θr

ff

.[E.4]

(iii) At every state pAt, btq, we have upĈpAt, btqq “ rV SIpAt, btq.

Proof. The FOC for [E.2] in state pAt, btq is u1pctq “ V SI
A pAt, btq. Because u is exponential

7For one example, see the consumption process [5.3] constructed below.
8For instance, see Yong and Zhou (1999, Theorem 3.3) or Touzi (2018, Propositions 2.4-2.5).
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and V SI satisfies Lemma E.1(iii), it follows that upctq “ rV SIpAt, btq. Equivalently,

ct “ rAt `
r

λ` r
bt ` rγ ´

log r

θ
.[E.5]

Substituting [E.5] into [E.2] and solving for γ yields [E.3], hence point (i). Substituting
[E.3] into [E.5] yields [E.4], hence point (ii). Point (iii) follows from the above observation
that upctq “ rV SIpAt, btq and point (ii).

Next, plugging [E.5] into the flow constraint [5.2] yields the following:

Lemma E.3. Define the asset process A˚ by

dA˚t “

ˆ

r ´ ρ

θr
`

1

2

σ2fpr;λq2

θr
`
λbt ´ µ

λ` r

˙

dt.[E.6]

The consumption process ĉ˚ defined by ĉ˚t :“ ĈpA˚t , btq satisfies:
(i) Its induced asset process Aĉ˚ satisfies Aĉ˚ “ A˚.
(ii) It evolves as

dĉ˚t “

ˆ

r ´ ρ` σ2fpr;λq2{2

θ

˙

dt`
σfpr;λq

θ
dWt[E.7]

(iii) It is feasible, i.e., is b-adapted and satisfies [5.2] and [NP-A].

Proof. Point (i) follows from plugging ĉ˚t “ ĈpA˚t , btq into [5.2]. Point (ii) follows from
noting that dĉ˚t “ r dA˚t `

r
pr`λq

dbt and plugging in [E.6] and [2.1]. For point (iii), only
[NP-A] is nontrivial. Writing [E.6] in integrated form yields

A˚t “ A0 `

ˆ

r ´ ρ

θr
`

1

2

σ2fpr;λq2

θr
´

µ

λ` r

˙

t`
λ

λ` r

ż t

0

bτ dτ.[E.8]

When λ “ 0, A˚ is deterministic and affine in t, so limtÑ8 e
´αtA˚t “ 0 for every α ą 0.

When λ ą 0, the same conclusion holds because limtÑ8 e
´αt

şt

0
bτ dτ “ 0 for all α ą 0

by Lemma K.3(iii) in Appendix K.

Lemmas E.2 and E.3 immediately yield:

Corollary E.4. The strategy ĉ˚ from Lemma E.3 satisfies upĉ˚t q ” rV SIpAĉ
˚

t , btq.

The next two lemmas are useful technical facts:

Lemma E.5. Under ĉ˚ from Lemma E.3, epr´ρqtu1pĉ˚t q, epr´ρqtupĉ˚t q, and epr´ρqtV SIpA˚t , btq

are martingales.
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Proof. Note that epr´ρqtupĉ˚t q “ ´e´θĉ
˚
0 exp

`

´1
2
σ2pfpr;λqq2 ´ σfpr;λqWt

˘

is a martin-
gale, u1pcq “ ´θupcq by CARA, and V SIpA˚t , btq “

1
r
upĉ˚t q by Corollary E.4.

Lemma E.6. Under A˚ from [E.6],Mt :“
şt

0
e´ρτV SI

b pA
˚
τ , bτ qσ dWτ is a martingale.

Proof. It suffices to show E0

”

şT

0

`

e´ρtV SI
b pA

˚
t , btqσ

˘2
dt
ı

ă 8 for all T ą 0. LemmaE.1(iii)
implies that V SI

b pA
˚
t , btq ”

p´rθq
r`λ

V SIpA˚t , btq and Lemma E.2(i) implies that upĉ˚t q “
rV SIpA˚t , btq. Thus, by Fubini’s Theorem, it suffices to show that

şT

0
e´2ρt E0 rupĉ

˚
t q

2s dt ă

8. To that end, Lemma E.3(ii) implies that

upĉ˚t q
2
“ expp´2θĉ˚0q expp´2pr ´ ρqt` σ2f 2

pr;λqtq expp´2σ2f 2
pr;λqt´ 2σfpr;λqWtq.

Because expp´2σ2f 2pr;λqt´ 2σfpr;λqWtq is a martingale, we have e´2ρt E0 rupĉ
˚
t q

2s “

expp´2θĉ˚0q expp´2rt` σ2f 2pr;λqtq. Thus,
şT

0
e´2ρt E0 rupĉ

˚
t q

2s dt ă 8, as desired.

We now are in a position to prove Lemma 5.1 itself:

Proof of Lemma 5.1. We show that, given initial condition pA0, b0q, the strategy ĉ˚ from
Lemma E.3 attains lifetime utility V SIpA0, b0q. The Itô expansion of e´ρtV SIpA˚t , btq is

e´ρTV SI
pA˚t , btq “ V SI

pA0, b0q `

ż T

0

e´ρt
“

Lĉ˚V SI
pA˚t , btq ´ ρV

SI
pA˚t , btq

‰

dt

`

ż T

0

e´ρtV SI
b pA

˚
t , btqσ dWt,

[E.9]

where for any v P C2pR2q, we let Lĉ˚vpA, bq :“ prA ` b ´ ĉ˚qBAvpA, bq ` λpµ{λ ´

bqBbvpA, bq`
1
2
σ2BbbvpA, bq. Lemma E.2(ii) implies thatLĉ˚V SIpA˚t , btq´ ρV

SIpA˚t , btq “

´upĉ˚t q. Substituting this into [E.9] and applying Lemma E.6 yields

V SI
pA0, b0q “ E0

„
ż T

0

e´ρtupĉ˚t q dt



` E0

“

e´ρTV SI
pA˚t , btq

‰

.[E.10]

Lemma E.5 shows that epr´ρqtV SIpA˚t , btq is a martingale. Therefore,

E0

“

e´ρTV SI
pA˚t , btq

‰

“ e´rT E0

“

epr´ρqTV SI
pA˚t , btq

‰

“ e´rTV SI
pA0, b0q,

so that letting T Ñ 8 in [E.10] yields V SIpA0, b0q “ E0

“ş8

0
e´ρtupĉ˚t q dt

‰

, as desired.
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F. Proof of Lemma 5.3

Wemust calculateA0´E0r
ş8

0
e´ρtpρ´rqA˚t dts, whereA0 :“ A0pb0, q0, rq and the process

A˚ is from [E.6]. We claim that

A0 ´ pρ´ rq

ż 8

0

e´ρtA˚t dt “ Π̂pb0, q0, rq `
pr ´ ρqλσ

ρpr ` λqpρ` λq

ż 8

0

e´ρt dWt,[F.1]

where Π̂pb0, q0, rq denotes the expression for Πpb0, q0, rq on the RHS of the first line
of [5.12]. To see this, note that

ş8

0
e´ρtA˚t dt “ A0

ρ
` 1

ρ

ş8

0
e´ρt dA˚t because dpe´ρtA˚t q “

´ρe´ρtA˚t dt`e´ρt dA˚t and, by (the proof of) Lemma E.3, limTÑ8 e
´ρTA˚T “ 0. Plugging

in [E.6], the expression for
ş8

0
e´ρtbt dt in Lemma K.4, and simplifying yields [F.1]. A

similar calculation yields

A0 ´ pρ´ rq

ż 8

0

e´ρtA˚t dt “

ż 8

0

e´ρtpĉ˚t ´ btq dt.[F.2]

Taking expectations in [F.1]–[F.2] and noting that E0r
ş8

0
e´ρt dWts “ 0 yields [5.12].9

G. Further Properties of SI Contracts

This appendix develops the properties of SI Contract described in Section 5.4.

Stationarity & State-Consistency. We say that a (direct-revelation) contract is Sta-
tionary if (i) it is FO-IC and (ii) kt :“ pt{qt ” k0 for some constant k0 ą 0. Strulovici
(2022) defines the class of “state-consistent” renegotiation-proof contracts; Theorem 1
therein states, in our terminology, that a contract is state-consistent iff it is Stationary.

Lemma G.1. Suppose that λ ą 0. A contract is Stationary with constant k0 ą 0 if and
only if it is a DR-SIC with rate r ą 0 such that k0 “ fpr;λq.

Proof. For the“if” direction, note that under a DR-SIC with rate r ą 0, the agent’s
promised utility satisfies qt ” V SIpAvt , ytq (where V SI is defined in [5.10]) and hence

[G.1] dqt “ pρ´ rqqtdt´ fpr;λqqtσdW y
t .

Furthermore, the Euler equation [5.7] and fact that u1pcq “ ´θupcq imply pt ” fpr;λqqt.
Thus, the contract satisfies [FO-IC] and kt ” fpr;λq. For the “only if” direction, fix a
Stationary contract with k0 ą 0. By [A.1] and [FO-IC], promised utility satisfies

[G.2] dqt “ pρqt ´ utqdt´ k0qtσdW y
t .

9The process Mt :“
şt

0
e´rτ dWτ is a uniformly integrable martingale because

ş8

0
pe´ατ q2 dτ ă 8

(see Exercise 5.24 of Karatzas and Shreve (1998, p. 38)). Thus, E0r
ş8

0
e´αt dWts “M0 “ 0.
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Comparing [G.1]–[G.2], it suffices to show that ut ” rpk0;λqqt, where rpk0;λq :“ λk0
θ´k0

is
the inverse of k0prq :“ fpr;λq. By the Martingale Representation Theorem, marginal
promised utility [3.2] satisfies

[G.3] dpt “ rpρ` λqpt ´ θuts dt`QtσdW y
t

for some y-adapted process Q. By the Stationarity hypothesis (that pt ” k0qt) and the
unique decomposition property for Itô processes, the drift (volatility) of p in [G.3] must
a.e. equal k0 times the drift (volatility) of q in [G.2]. Equating the drifts and using the
identity pt ” k0qt yields ut ” rpk0;λqqt, as desired.

Long-Run Properties. Under an SI Contract, we say that the agent converges to
misery if ut, Vt Ñ ´8 P-a.s. and say that he converges to bliss if ut, Vt Ñ 0 P-a.s., where
ut :“ upĉ˚t q and Vt :“ V SIpAĉ

˚

t , btq.

Theorem 3. Under the optimal SI Contract, the following hold:
(i) For each σ ą 0, there exists a λpσq ą 0 such that the agent converges to misery if

λ ą λpσq and to bliss if λ P r0, λpσqq.10
(ii) For each λ ą 0, there exists a σpλq ě 0 such that the agent converges to misery if

σ ą σpλq and to bliss if σ P p0, σpλqq. Furthermore, σpλq “ 0 if and only if λ ě ρ.

By Lemma 5.3, the principal’s optimization over SI Contracts can be written as

inf
rą0

„

´
logprq

θρ
`
r ´ ρ` σ2fpr;λq2{2

θρ2



.[G.4]

Let pλ, σq ÞÑ r˚pλ, σq denote an arbitrary selection from the argmin correspondence of
[G.4], which is nonempty. Let k˚pλ, σq :“ f pr˚pλ, σq, λq. We require two lemmas.

Lemma G.2. Under the optimal SI Contract:
(i) For each σ ą 0, k˚p¨, σq is strictly decreasing, with limλÑ0 k

˚pλ, σq “ k˚p0, σq “ θ

and limλÑ8 k
˚pλ, σq “ 0.

(ii) For each λ ą 0, k˚pλ, ¨q is strictly decreasing, with limσÑ0 k
˚pλ, σq “ fpρ;λq and

limσÑ8 k
˚pλ, σq “ 0.

Proof. Point (i): Let σ ą 0 be given. For each λ ą 0, let rpk0;λq :“ λk0
θ´k0

denote the
inverse of k0prq :“ fpr;λq. Changing variables in [G.4] from r to k and noting that
B2

BkBλ
rpk;λq ą 0, Edlin and Shannon (1998, Theorem 1) (for minimization problems)

implies that k˚p¨, σq is strictly decreasing. Next, recall from the proof of Theorem 1
that r˚pλ, σq satisfies the FOC [5.14] and 0 ă r˚pλ, σq ď ρ for all λ ě 0. (Furthermore,

10For λ “ λpσq, ut and Vt are transient, with lim inftÑ8 ut, Vt “ ´8 and lim suptÑ8 ut, Vt “ 0.

OA–9



r˚p0, σq “ ρ, which yields k˚p0, σq “ θ.) Multiplying [5.14] through by ρr˚pλ, θq ą 0 and
rearranging yields

ρ “ r˚pλ, σq ` σ2
¨
λθ2r˚pλ, σq2

pr˚pλ, σq ` λq3
.[G.5]

Because r˚p¨, σq is bounded, the second term in [G.5] goes to 0 as λÑ 8. This implies
limλÑ8 r

˚pλ, σq “ ρ, and hence limλÑ8 k
˚pλ, σq “ limλÑ8 fpρ;λq “ 0. Finally, we show

that limλÑ0 r
˚pλ, σq “ ρ, which implies limλÑ0 k

˚pλ, σq “ limλÑ0 fpρ;λq “ θ. To this
end, notice that r :“ lim infλÑ0 r

˚pλ, σq ą 0 (if not, [G.4] would explode as λ Ñ 0,
contradicting the finite upper bound from setting r “ ρ). Consequently, we have

0 ď lim inf
λÑ0

λθ2r˚pλ, σq2

pr˚pλ, σq ` λq3
ď lim sup

λÑ0

λθ2r˚pλ, σq2

pr˚pλ, σq ` λq3
ď lim sup

λÑ0

λθ2r˚pλ, σq2

r3
“ 0,

where the equality uses r˚p¨, σq ď ρ. Display [G.5] then yields limλÑ0 r
˚pλ, σq “ ρ.

Point (ii): Let λ ą 0 be given. Because B2

BrBσ
rσ2fpr;λqs ą 0, Edlin and Shannon (1998,

Theorem 1) (for minimization problems) applied to [G.4] implies that r˚pλ, ¨q is strictly
decreasing, which further implies that k˚pλ, ¨q is strictly decreasing. The limit properties
follow from calculations similar to those in point (i) above, which are omitted.

Lemma G.3. Let D˚ : R` ˆR`` Ñ R be defined by

D˚pλ, σq :“ r˚pλ, σq ´ ρ`
σ2

2
f pr˚pλ, σq;λq2 .[G.6]

Under the optimal SI Contract, the following hold:
(i) If D˚pλ, σq ą 0, then ĉ˚t Ñ 8 and Vt, ut Ñ 0 P-a.s.
(ii) If D˚pλ, σq ă 0, then ĉ˚t Ñ ´8 and Vt, ut Ñ ´8 P-a.s.

Proof. By [5.3], ĉ˚ is a Brownian motion with drift D˚pλ, σq{θ. The long-run properties
of ĉ˚ thus follow from the SLLN for Brownian motion (Lemma K.1 in Appendix K). The
long-run properties of ut and Vt then follow from CARA utility, [5.8], and the Continuous
Mapping Theorem.

Proof of Theorem 3. Recall from the proof of Theorem 1 that r˚pλ, σq satisfies the FOC
[5.14], which as noted above is equivalent to [G.5]. Plugging [G.5] into [G.6] yields

D˚pλ, σq “ σ2f pr˚pλ, σq;λq2

ą 0

¨

„

1

2
´

λ

r˚pλ, σq ` λ



.[G.7]
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It follows from [G.7] that

D˚pλ, σq ą 0 ðñ r˚pλ, σq ą λ ðñ k˚pλ, σq ą θ{2,[G.8]

D˚pλ, σq ă 0 ðñ r˚pλ, σq ă λ ðñ k˚pλ, σq ă θ{2.[G.9]

Point (i): Let σ ą 0 be given. By Lemma G.2(i), there exists a unique λpσq ą 0 such that
k˚pλ, σq ą θ{2 iff λ P

“

0, λpσq
˘

and k˚pλ, σq ă θ{2 iff λ ą λpσq. The result then follows
from [G.8]–[G.9] and Lemma G.3.
Point (ii): Let λ ą 0 be given. By Lemma G.2(ii), there exists a unique σpλq ě 0 such
that k˚pλ, σq ą θ{2 iff σ P p0, σpλqq and k˚pλ, σq ă θ{2 iff σ ą σpλq. Furthermore,
limσÑ0 k

˚pλ, σq “ fpρ;λq, and fpρ;λq ą θ{2 iff ρ ą λ. Thus, σpλq ą 0 iff ρ ą λ. The
result then follows from [G.8]–[G.9] and Lemma G.3.

H. Hidden Savings

In this appendix, we consider the hidden savings variant of PPI’s hidden endowment
model in which (a) the agent can directly self-insure via the market at rate ρ, and (b)
both the agent’s endowment and trading activity are his private information (as in Allen
1985 and Cole and Kocherlakota 2001).

Given a contract s (as in Section 2.1) and a feasible set of (extended) misreporting
strategies F Ď Mext (as in Section 6.1), the agent chooses an m P F and a b-adapted
consumption strategy ĉ subject to the constraint that the induced b-adapted asset process
Am,ĉ solves the equation

Am,ĉt “
`

ρAm,ĉt ` bt ` st ´ ĉt
˘

dt

and satisfies the no Ponzi condition [NP-A] at the market rate r “ ρ. The agent’s joint
strategy pm, ĉq is optimal given contract s if it maximizes his lifetime utility from the
consumption process ĉ among all strategies satisfying the above constraints.

A contract is F -HS-IC if it makes truthful reporting—i.e., some joint strategy
pm˚ ” 0, ĉq—optimal for the agent.11 It is F -NS-IC it makes truthful reporting and no
savings—i.e., the joint strategy pm˚ ” 0, ĉ “ s` bq—optimal for the agent. It is NS-FO-
IC if (i) it is FO-IC and (ii) conditional on truthful reporting, the consumption process
ĉ “ s ` y satisfies the agent’s Euler equation [5.7] at rate r “ ρ. Intuitively, properties
(i)–(ii) defining NS-FO-IC contracts are the infinitesimal optimality conditions implied
by F -NS-IC.12 Finally, Contract PPI is implementable as an F -HS-IC contract if there

11In an analogous discrete-time setting, Doepke and Townsend (2006) show that it is without loss of
generality (in terms of implementable consumption processes and payoffs) to focus on F -HS-IC contracts.

12Cf. Footnotes 56 and 57 for possible technical caveats to this intuition.

OA–11



is an F -HS-IC contract under which the agent’s optimal joint strategy pm, ĉq satisfies
m “ m˚ ” 0 (truthful reporting) and ĉ “ c from [3.4] with y “ y˚ “ b (consumption is
the same as that under Contract PPI and truthful reporting). We define implementability
as an F -NS-IC contract in the obvious analogous manner.

Theorem 4. Given any λ ě 0, Contract PPI satisfies the following properties:
(i) It is the unique (hence, optimal) NS-FO-IC contract.
(ii) It is implementable as an F -HS-IC contract for any F Ď tm : m is b-adaptedu.

Proof. Point (i): Under any NS-FO-IC contract, the agent’s flow utility ut ” upst ` ytq

and marginal flow utility u1pst ` ytq ” ´θut are P˚-martingales. Plugging this into [3.1]–
[3.2] and using Tonelli’s Theorem to interchange the order of integration yields qt ” ut{ρ

and pt ” θut{pρ` λq. The only FO-IC contract with these properties is Contract PPI.
Point (ii): As noted in Section 5.3, Contract PPI can be implemented as an SI Contract
with zero taxes (r “ ρ); moreover, this can be done with deterministic flow transfers
rather than a lump-sum transfer at t “ 0, per Footnote 36. This implies the present result
because (a) those transfers are independent of the agents’ reports by construction and
(b) from the agent’s perspective, saving via the ambient market is a perfect substitute for
saving via the principal at rate ρ.

The intuition for Theorem 4(i) is familiar from Allen’s (1985) two-period model. With
hidden savings, the agent only cares about the net present value (NPV) of the contract’s
transfers, so HS-IC requires that the agent receive the same NPV along every path of
reports. Thus, it is as if all transfers were made in lump-sum at time t “ 0, as in the
SI Contract with no taxes (r “ ρ), which implements Contract PPI. Two aspects of
Theorem 4(ii) warrant elaboration:
• Theorem 4(ii) states that Contract PPI is implementable even when the agent’s
misreporting strategies are permitted to violate the no Ponzi constraint [NP-m]. This
might seem to contradict Observation 2 and Theorem 2, but it does not. The above
proof shows that, with hidden savings, Contract PPI can be implemented without
communication via determinstic transfers by having the agent save and consume
outside of the contract. In such implementations, the no Ponzi constraint on assets
[NP-A]—which is necessary for the agent’s self-insurance problem to be well-posed—
effectively imposes the same restrictions on the agent’s consumption that [NP-m] does
in PPI’s model without hidden savings. This suggests that [NP-m] is needed for PPI’s
model to be well-behaved: without it, we would reach the unreasonable conclusion
that Contract PPI is not IC in the original model (without hidden savings) but is
HS-IC in the hidden savings model, wherein the agent has access to more deviations.

• Theorem 4(ii) does not state that Contract PPI is always implementable as an F -
NS-IC contract. In fact, the obvious adaptation of Observation 2 implies that it is
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not
“

MLAC
ď XMr

‰

-NS-IC for any r ą ρ. Again, this suggests that [NP-m] (with an
appropriately chosen rate r) is needed for PPI’s model to be well-behaved: without it,
restricting attention to NS-IC contracts would be with loss of generality, undercutting
a key simplification on which much of the hidden savings literature is based (e.g.,
Cole and Kocherlakota 2001; DeMarzo and Sannikov 2006; He et al. 2017).

I. Incentive Compatibility of DR-SICs without Jump Reports

In this appendix, we consider the following corollary of Theorem 2:

Theorem 5. For any given r ą 0, every DR-SIC pb0, q0, rq is Mr-IC. Per Fact 1, such
contracts are also F -IC for any smaller strategy space F ĎMr.

Our goal is to prove Theorem 5 from first principles, without reference to the “extended”
reporting problem from Section 6, and to highlight some subtleties that arise in such an
analysis. We first introduce the requisite definitions, then discuss the relevant subtleties,
and finally present the proof (sketch) of Theorem 5.

Preliminaries. Fix a DR-SIC with rate r ą 0. When the agent’s strategy space is Mr,
she is constrained to misreports with absolutely continuous sample paths, viz., mt ”
şt

0
∆τdτ . Thus, as in PPI, her reporting problem can be viewed as one of stochastic control

with states pAvt , yt,mtq P R3 and control ∆t P R. As in Appendix B, V NJpAvt , yt,mtq

denotes the agent’s value function in this problem.
For a smooth function ψ P C2pR3q and ∆t P R, define the infinitesimal generator13

L∆tψpAvt , yt,mtq :“ rµ´ λ ¨ pyt ´mtq `∆tsψypA
v
t , yt,mtq `∆t ¨ ψmpA

v
t , yt,mtq

`

„

Āpr;λq `
λ

r ` λ
yt



ψApA
v
t , yt,mtq `

σ2

2
¨ ψyypA

v
t , yt,mtq,

where Āpr;λq is the constant from [5.5]; define the Hamiltonian

HpAvt , yt,mt | ψq :“ upĈpAvt , ytq ´mtq ` sup
∆tPR

“

L∆tψpAvt , yt,mtq
‰

,[H]

where ĈpAvt , ytq is from [5.4]; and define the (“no jump”) HJB equation

[HJB-NJ] ρψpAvt , yt,mtq “ HpAvt , yt,mt | ψq.

The relevant notion of a “solution” to [HJB-NJ] will be that of a supersolution.

Definition I.1. A (continuous) locally bounded function F : R3 Ñ R is:

13We have dmt “ ∆tdt, dyt “ dbt ` dmt (where dbt satisfies [2.1] and bt ” yt ´mt), and dAvt “
rĀpr;λq ` λ

r`λytsdt by [6.1].

OA–13



(i) A viscosity supersolution of [HJB-NJ] if

ρψpAvt , yt,mtq ě HpAvt , yt,mt | ψq[I.1]

for all pAvt , yt,mtq P R
3 and ψ P C2pR3q such that pAvt , yt,mtq is a minimizer of F ´ψ.

(ii) A classical supersolution of [HJB-NJ] if it is a viscosity supersolution and in C2pR3q.
(iii) A classical solution to [HJB-NJ] if it is a classical supersolution and satisfies [I.1] (for

ψ “ F ) with equality everywhere.

Definition I.1 is standard in the stochastic control literature (e.g., Pham 2009, Ch. 3–4;
Touzi 2018, Ch. 2 and 6). For essentially any (maximization) control problem, if the
value function is locally bounded (but possibly non-smooth), it is necessarily a viscosity
supersolution of the relevant HJB equation (Touzi 2018, Proposition 6.2). If the value
function is also smooth, it is necessarily a classical supersolution of the HJB equation
(Touzi 2018, Proposition 2.4).

Discussion. Generally, even if a value function is smooth, additional regularity con-
ditions on the Hamiltonian are needed to conclude that it is a classical solution, rather
than just a supersolution (Touzi 2018, Proposition 2.5).14 It is known that the requisite
regularity conditions typically fail in settings where the control variable is unbounded
and enters linearly in the infinitesimal generator, as in the present formulation of the
agent’s reporting problem (e.g., Pham 2009, Sec. 3.4.2 and 4.5). In such cases, the value
function only satisfies the HJB equation in the weaker sense of being a supersolution.

To illustrate, recall from Lemma B.1 that, given the agent’s value function V DR P

CpR2q from Section 6.4 in the extended reporting problem (with feasible set Mr
ext), we

can deduce that V NJpAvt , yt,mtq “ V DRpAvt , yt ´mtq, and hence V NJ P CpR3q. This fact
motivates the following observation:

Lemma I.2. The function F pAvt , yt,mtq :“ V DRpAvt , yt´mtq is a classical supersolution
of [HJB-NJ]. However, it is not a classical solution: [I.1] (with ψ “ F ) holds with equality
at pAvt , yt,mtq iff mt “ 0.

Proof. By [6.9], we have V DRpAvt , yt ´ mtq “ V̂ DR exp
“

´θr
`

Avt `
bt
r`λ

˘‰

for V̂ DR “

´1
r

exp
“

θĀpr;λq
‰

(where Āpr;λq is from [5.5]). Thus, for F defined as above, we have
FA “ ´θrF , Fy “ FA{pr ` λq, Fm ` Fy “ 0, and Fyy “ θ2r2F {pr ` λq2. Furthermore,
for each pAvt , yt,mtq P R3, upĈpAvt , ytq ´mtq “ exp

“

θλ
r`λ

mt

‰

¨ rF pAvt , yt ´mtq. These

14These conditions concern the Hamiltonian’s continuity, when viewed as a function of the partial
derivatives of ψ. For all other HJB equations stated in this paper (viz., [6.9] in Section 6.4, [E.2] in
Appendix E, and [J.6] and [J.9] in Appendix J.3.1) it can be shown that the regularity conditions in Touzi
(2018, Proposition 2.5) are satisfied because the control variables enter the strictly concave/convex “flow
return” functions, yielding interior optima and allowing one to solve for the relevant Hamiltonians in
closed-form. This justifies our focus on classical solutions elsewhere in the paper.

OA–14



properties imply that

ρF pAvt , yt,mtq´HpA
v
t , yt,mt | F q “ ´rF pA

v
t , yt,mtq

ą 0

¨

ˆ

exp

„

θλ

r ` λ
mt



´ 1´
θλ

r ` λ
mt

˙

ě 0, with equality iffmt “ 0

where (strict) positivity of the last term follows from strict convexity of x ÞÑ ex.

One way to “restore equality” in the agent’s HJB equation is to reformulate the
agent’s problem by expanding his strategy space and treating mt P R as a control
(rather than state) variable, as in Section 6. Another way is to keep ∆t P R as the
control, but reformulate [HJB-NJ]. For instance, noting that HpAvt , yt,mt | ψq ă 8 iff
ψypA

v
t , yt,mtq ` ψmpA

v
t , yt,mtq “ 0, [HJB-NJ] is equivalent to the variational inequality

min
 

ρψp¨q ´Hp¨ | ψq,
ˇ

ˇψyp¨q ` ψmp¨q
ˇ

ˇ

(

“ 0

described in Pham’s (2009) treatment of singular control problems. Alternatively, one
can reformulate [HJB-NJ] as the variational inequality in the associated impulse control
problem (Oksendal and Sulem 2019) where setting ∆t “ ˘8 is viewed as inducing a
jump in mt, as in Strulovici (2022).

Proof of Theorem 5. We work directly with [I.1], the inequality version of [HJB-NJ].
We describe the main steps, only sketching some details for brevity.

Step 1: Shape of Value Function. It is not a priori clear that the value function V NJ

coincides with V DR (cf. Lemma B.1). But by applying the same controls at different
states, it can be shown that

V NJ
pAvt , yt,mtq “ V̂ NJ

¨ hpmtq ¨ exp

„

´θr

ˆ

Avt `
yt

r ` λ

˙

[I.2]

for some constant V̂ NJ ă 0 and convex function h : R Ñ R``. Without loss of generality,
we can normalize hp0q :“ 1.

Step 2: Determining the h Function. It is not a priori clear that h is smooth. But Step
1 implies that V NJ is locally bounded, so Touzi (2018, Proposition 6.2) implies that V NJ

is a viscosity supersolution of [HJB-NJ]. By standard smooth approximation results,15
there exists a dense subset D Ď R such that, at every point mt P D, there exists a
function φpmtq P C2pRq satisfying φpmtqpmtq “ hpmtq and φpmtqp¨q ě hp¨q; hence, h is
differentiable at mt and h1pmtq “ φ1

pmtq
pmtq. Thus, for any pAvt , yt,mtq with mt P D, the

15See, for instance, Lemma 8(g), Theorem 9, and associated discussion in Katzourakis (2015, Ch. 2).
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function

ψpmtqpmtqpA
v
t , yt,mtq :“ V̂ NJ

¨ φpmtqpmtq ¨ exp

„

´θr

ˆ

Avt `
yt

r ` λ

˙

[I.3]

satisfies the conditions of Definition I.1(i). Plugging [I.3] into [H], we see thatHpAvt , yt,mt |

ψpmtqq ă 8—a necessary condition for [I.1]—iff φ1
pmtq
pmtq “ fpr;λqφpmtqpmtq, which is

equivalent to h1pmtq “ fpr;λqhpmtq. As h1p¨q “ fpr;λqhp¨q on the dense set D Ď R and
h is convex (hence continuous and directionally differentiable on R), it can be shown
that h1p¨q “ fpr;λqhp¨q on R. The unique solution to this ODE satisfying hp0q “ 1 is

hpmtq “ exp rfpr;λqmts .[I.4]

Step 3: Determining the V̂ NJ Constant. Combining [I.1], [I.2], and [I.4] yields V̂ NJ ě

´1
r

exp
“

θĀpr;λq
‰

.We conclude that this inequality holdswith equality because V DRpAvt , yt´

mtq ě V NJpAvt , yt,mtq by construction (cf. Section 6.4).16

Step 4: Optimal Strategy. Together, [I.2] and [I.4] imply that, for all states pAvt , yt,mtq,
the supremum in [H] is attained at ∆t “ 0 (in fact, at any ∆t P R). Step 3 and the same
calculations underlying Lemma I.2 imply that V NJ satisfies [I.1] with equality when
mt “ 0. Thus, integrating [I.1] forward from an truthful initial state pAv0, y0,m0 “ 0q

implies that truthful reporting attains V NJpAv0, y0,m0 “ 0q, i.e., [IC] holds.

J. Optimal FO-IC Contracts

This appendix presents supporting details for the discussion of fully optimal contracts
in Section 7.1. In Appendix J.3.1 (see Remark J.10), we also independently verify Steps
1–3 and 5 of PPI’s derivation of Contract PPI, as described in Appendix A.

J.1. Domain of Implementable (Marginal) Promised Utilities

Lemma J.1. For each q0 ă 0, the following hold:
(i) If λ ą 0, then under any FO-IC contract kt P p0, θq for all t ě 0. Furthermore, for

each k0 P p0, θq there exists an FO-IC contract with kt ” k0.
(ii) If λ “ 0, then under any FO-IC contract kt “ θ for all t ě 0. Furthermore, an FO-IC

contract exists.

16This is the only place in the proof that we reference the extended reporting problem from Section 6;
alternatively, we could reach the same conclusion by appealing to the (equivalent) self-insurance problem
from Section 5.1. We do not know if this step can be avoided: [I.1] only places a lower bound on V̂ NJ and
in principle could hold as a strict inequality everywhere, so it seems necessary to appeal elsewhere for an
upper bound on V̂ NJ. (One could instead conjecture that V̂ NJ “ ´ 1

r exp
“

θĀpr;λq
‰

and then appeal to a
“verification theorem” as desribed in Section 4.2, but this would entail additional technical restrictions on
the agent’s strategy space beyond those embodied in Mr. See Pham (2009, Theorem 3.5.3) for details.)
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Proof. Point (i): Let λ ą 0 and fix an FO-IC contract. Since λ ą 0 and up¨q ă 0, we
have ut ă e´λtut ă 0 for all t ą 0, so [3.1]–[3.2] imply that pt ą θqt. Dividing through by
qt ă 0 yields kt “ pt{qt ă θ, while qt, pt ă 0 implies kt ą 0. DR-SICs demonstrate the
existence claim (see [5.15] and recall that fp¨;λq has range p0, θq).
Point (ii): Let λ “ 0 and fix an FO-IC contract. Since λ “ 0, we have ut ” e´λtut. Thus,
[3.1] and [3.2] imply that pt “ θqt, and dividing through by qt ă 0 yields kt “ pt{qt “ θ.
Contract PPI demonstrates the existence claim.

Lemma J.1 allows us to define the domain D of implementable pq, pq pairs by

D :“

#

 

pq, pq P R2
´´ : p{q P p0, θq

(

if λ ą 0
 

pq, pq P R2
´´ : p “ θq

(

if λ “ 0.
[J.1]

J.2. Permanent Shocks

Theorem 6. If λ “ 0, then Contract PPI satisfies the following properties:
(i) It is the unique optimal FO-IC contract.
(ii) It is F -IC for any feasible set F Ď tm : m is b-adaptedu.

Proof. Point (i). For any FO-IC contract, Lemma J.1 implies that pt ” θqt. Display [A.1]
then implies that, under truthful reporting, promised utility satisfies

[J.2] qt “ q0 exp

„
ż t

0

ˆ

ρ´ βτ ´
σ2θ2

2

˙

dτ ´ σθWt



,

where βt ” ut{qt. The agent’s recommended consumption process is then ct ” cpqt, βtq :“

´ logp´qtβtq{θ. Thus, substituting the transfer process st ” cpqt, βtq ´ yt into [2.2] and
ignoring terms that do not involve β, the principal minimizes

E˚0

„
ż 8

0

e´ρt
ˆ

´ logpβtq `

ż t

0

βτdτ

˙

dt



over all b-adapted, strictly positive β processes. This objective is strictly convex, so the
optimal β process is unique, deterministic, and satisfies the pointwise FOC17

d

dβt

„

´ logpβtq `
βt
ρ



“ 0 for all t ě 0.

17Focusing on deterministic β and applying integration by parts, the objective in [J.3] becomes
ş8

0
e´ρt p´ logpβtq ` βt{ρqdt. Note that the flow cost in this transformed objective satisfies an Inada

condition at βt “ 0, implying that the optimal process must be strictly positive. Thus, the pointwise
first-order condition from this transformed objective is [J.3].
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Thus, the optimal β is βt ” ρ, which upon substitution into [J.2] yields Contract PPI.
Point (ii). Under Contract PPI, ct “ cpq0; ρq` Āpρ; 0qt`yt when λ “ 0. Thus, the transfer
process st ” ct ´ yt is deterministic, i.e., report-independent.

Remark J.2. Theorem 6(i) can be strengthened: Contract PPI is the unique optimal
contract satisfying γt ` pt ě 0 for all t ě 0, the one-sided variant of [FO-IC] that is
appropriate under NHB or IML (cf. Footnote 57). We adapt the above proof as follows.
Defining k̂t :“ ´γt{qt, the constraint becomes k̂t ě θ. Promised utility satisfies qt “
q0 exp

”

şt

0

´

ρ´ βτ ´
σ2k̂2τ

2

¯

dτ ´
şt

0
σk̂τdWτ

ı

. The principal’s problem is then additively
separable in β and k̂. The optimization over β is unchanged. The portion of the principal’s
objective involving k̂ is E˚0

”

ş8

0
e´ρt

´

σ2

2

şt

0
k̂2
τdτ ` σ

şt

0
k̂τdWτ

¯ı

. The stochastic integral
vanishes in expectation, and (constrained) minimization of the first term yields k̂t ” θ.

J.3. Transient Shocks

Let Jpy0, q0, p0q denote the principal’s value function over FO-IC contracts given the
initial condition py0, q0, p0q (see [J.4] below for details). We call J : R ˆ D Ñ R the
principal’s FO value function.

Definition J.3. The environment is regular if:
(i) An optimal FO-IC contract (as defined in Appendix A) exists.
(ii) The principal’s FO value function J is twice continuously differentiable.

Regularity is a technical assumption, which is implicitly adopted in PPI. It is needed to
analyze the principal’s FO problem with standard stochastic control techniques.

Theorem 7. Suppose that λ ą 0. If the environment is regular, then the optimal DR-SIC
is not an optimal FO-IC contract.

We prove Theorem 7 in Appendix J.3.1 below. Recall that DR-SICs are equivalent
to Stationary contracts, i.e., those with constant kt “ pt{qt processes (Lemma G.1).
Thus, Theorem 7 equivalently states that the optimal FO-IC contract is not Stationary,
consistent with Implication 2 at the end of Appendix A. Of course, if the first-order
approach is valid—viz., every IC contract is FO-IC, and the optimal FO-IC contract is
IC—then Theorem 7 also implies that the fully optimal contract outperforms the optimal
DR-SIC/Stationary contract. It is an open question whether the first-order approach is
valid in PPI’s model with λ ą 0.

J.3.1. Proof of Theorem 7

By the Martingale Representation Theorem, the agent’s promised utility process q
(defined in [3.1]) under any FO-IC contract satisfies [A.1] and FO-IC, and his marginal
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promised utility process p (defined in [3.2]) satisfies

[J.3] dpt “ rpρ` λqpt ´ θuts dt`QtσdW y
t ,

where σdW y
t ” dyt ´ pµ´ λytqdt and Q is a y-adapted process.

Definition J.4. The principal’s auxiliary first-order (FO) problem is

Jpy0, q0, p0q :“ inf
pc,QqPAP py0,q0,p0q

E˚0

„
ż 8

0

e´ρt pct ´ btq dt



[J.4]

where AP py0, q0, p0q consists of the y-adapted processes pc,Qq such that [A.1] and [J.3]
have unique solutions satisfying [FO-IC] and the transversality conditions: for all t ě 0,
limTÑ8 E˚t

“

e´ρpT´tqqT
‰

“ limTÑ8 E˚t
“

e´ρpT´tqpT
‰

“ 0.18 The first-stage FO problem is

inf
p0ă0 s.t. pq0, p0q P D

Jpy0, q0, p0q,[J.5]

and the FO problem is the joint optimization [J.4]–[J.5].

Definition J.3(ii) requires that J P C2 pR ˆDq. Standard arguments (Yong and Zhou
1999, Theorem 3.3; Touzi 2018, Propositions 2.4–2.5) then imply that J is a classical
solution to the HJB equation

ρJpyt, qt, ptq “ min
pct,QtqPR2

”

ct ´ yt ` Jypyt, qtq ¨ pµ´ λytq ` Jqpyt, qt, ptq ¨ pρqt ´ upctqq

` Jppyt, qt, ptq ¨ ppρ` λqpt ` θupctqq[J.6]

`
σ2

2
Jyypyt, qt, ptq `

σ2p2
t

2
Jqqpyt, qt, ptq `

σ2Q2
t

2
Jpppyt, qt, ptq

´ σ2ptJyqpyt, qt, ptq ` σ
2QtJyppyt, qt, ptq ´ σ

2ptQtJqppyt, qt, ptq
ı

.

(Cf. display (19) on p. 1249 of PPI.) We wish to rewrite [J.6] in terms of pyt, qt, ktq. This
requires two lemmas, the latter of which appears in PPI as a conjecture.

Lemma J.5. Under any FO-IC contract and truthful reporting, the kt ” pt{qt process
satisfies

[J.7] dkt “
”

pβt ` λq kt ´ θβt ` σ
2kt

´

k2
t ´ Q̂t

¯ı

dt` σ
”

k2
t ´ Q̂t

ı

dWt,

where the process Q̂ “ pQ̂tqtě0 is defined as Q̂t :“ ´Qt{qt.

Proof. Apply Ito’s lemma to [A.1] and [J.3] under truthtelling (W y
t ” Wt).

18As in Section 2, we also implicitly restrict attention to pc,Qq processes such that the double-integral
defining Jpy0, q0, p0q is well-defined.
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Lemma J.6. Let λ ą 0. If the environment is regular, then J satisfies Jpyt, qt, ptq ”
Ĵpy0, q0, p0{q0q, where

[J.8] Ĵpy0, q0, k0q :“ ´
y0

ρ` λ
´

logp´q0q

ρθ
` hpk0q

for some function h P C2 pp0, θqq.

Proof. Regularity implies that J is well-defined and finite-valued and, given [J.8], also
that h P C2 pp0, θqq. Let pq0, p0q P D, y0 P R, and α ą 0 be given for Steps 1-2 below.
Step 1:We assert that Jpy0, q0, p0q “ Jp0, q0, p0q ´ y0{pρ` λq. Let pc,Qq P AP py0, q0, p0q

be given. Define gt :“ y0e
´λt, c̃tpyq :“ ctpy ` gq, and Q̃tpyq :“ Qtpy ` gq.19 We have

pc̃, Q̃q P AP p0, q0, p0q. Let P˚,py0q denote the distribution over report paths starting from
y0 and P˚,p0q denote the distribution starting from ỹ0 “ 0, assuming truthful reporting.
The law of pc,Qq under P˚,py0q equals the law of pc̃, Q̃q under P˚,p0q. Thus,

E˚,py0q0

„
ż 8

0

e´ρt pct ´ ytq dt



“ E˚,p0q0

„
ż 8

0

e´ρt pc̃t ´ ytq dt



´

ż 8

0

e´ρtgt dt

“ y0{pρ` λq

.

Step 2:Weassert that Jpy0, αq0, αp0q “ Jpy0, q0, p0q´logpαq{pρθq. Let pc,Qq P AP py0, q0, p0q

be given. Define c̃t :“ ct ´ logpαq{θ and Q̃t :“ αQt. Note that upc̃tq ” αupctq. Display
[A.1], [J.3], and [FO-IC] then imply that pc̃, Q̃q P AP py0, αq0, αp0q. The distribution over en-
dowment paths is the same at both initial states, so the principal’s cost of c̃ at py0, αq0, αp0q

equals her cost of c at py0, q0, p0q plus
şt

0
e´ρt p´ logpαq{θq dt “ ´ logpαq{pθρq.

Step 3: Fix pq0, p0q P D and y0 P R. Combining Steps 1 and 2 with α “ ´p0{q0 yields

Jpy0, q0, p0q “ ´
y0

ρ` λ
´

logp´q0q

ρθ
` J p0,´1,´p0{q0q .

Defining hpk0q :“ J p0,´1,´k0q and Ĵ as in [J.8] completes the proof.

Using Lemmas J.5 and J.6, we can write the HJB equation [J.6] in terms of pyt, qt, ktq as

ρĴpyt, qt, ktq “ min
βtą0,Q̂tPR

!

cpqt, βtq ´ yt ´
1

ρ` λ
rµ´ λyts ´

1

ρθ
rρ´ βts

` h1pktq
”

pβt ` λq kt ´ θβt ` σ
2kt

`

k2
t ´ Q̂t

˘

ı

`
σ2k2

t

2ρθ
`
σ2pk2

t ´ Q̂tq
2

2
h2pktq

)

,

[J.9]

19That is, the path of pc̃, Q̃q when the agent reports the endowment path ŷ P C pr0,8qq is the same as
the path of pc,Qq when he reports the endowment path ŷ ` g.
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where βt “ upctq{qt and cpqt, βtq “ ´ logp´βtqtq{θ.

Lemma J.7. Let λ ą 0. If the environment is regular, then any optimal β: satisfies
β:t ” β̂pktq, where β̂ : p0, θq Ñ R is defined by

β̂pktq :“
1

1{ρ` θpkt ´ θqh1pktq
.[J.10]

Proof. Eliminating terms on the RHS of [J.9] yields the following minimization over βt,
which any optimal β: process must a.e. satisfy

[J.11] min
βtą0

„

´ logpβtq `
βt
ρ
` βt ¨ h

1
pktqpkt ´ θq



.

The unique solution to [J.11] is interior and characterized by the FOC [J.10].

Lemma J.8. Let λ ą 0. If the environment is regular, then any k:0 P arg mink0Pp0,θq hpk0q

satisfies β̂pk:0q “ ρ.

Proof. Because h P C2 pp0, θqq by Definition J.3(i) and Lemma J.6, any such k:0 must
satisfy the FOC h1pk:0q “ 0. Plugging this into [J.10] completes the proof.

Lemma J.9. Let λ ą 0. If the environment is regular and an optimal FO-IC contract is
Stationary (i.e., induces a constant k process), then that contract is Contract PPI.

Proof. Consider any optimal FO-IC contract that is Stationary. Lemma J.5 and the
unique decomposition property for Ito processes imply that k2

t ” Q̂:t (so k has zero
volatility) and thus that β:t pλ` ktq ´ θβ

:
t ” 0 (so k has zero drift). Furthermore, [J.5] and

[J.8] imply that kt ” k:0 P arg mink0Pp0,θq hpk0q. Then Lemma J.8 implies that β̂:t ” ρ and
Lemma G.1 implies that kt ” fpρ;λq “ k˚0 . This yields Contract PPI.

Proof of Theorem 7. Suppose the environment is regular. Theorem 1(i) implies that the
optimal SI Contract / DR-SIC strictly dominates Contract PPI. Every DR-SIC is FO-IC
(by construction) and Stationary (by Lemma G.1). If an optimal FO-IC were Stationary,
then Lemma J.9 would imply that it is Contract PPI, a contradiction.

Remark J.10. The above work confirms Steps 1–3 and 5 of PPI’s derivation of Contract
PPI, as described in Appendix A. The conjecture in Step 1 is established by Lemma J.6.
Step 2 follows from Lemma J.6 and [J.9]. Step 3 follows from plugging the optimal Q̂t

from [J.9] into [J.7]. Step 5 is Lemma J.9.

K. Properties of Brownian Motion and OU Process

This appendix collects auxiliary facts about Brownian motion (BM) and OU processes.
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Lemma K.1 (SLLN for BM). LetW “ pWtqtě0 be a standard Brownian motion. Then
limtÑ8Wt{gptq “ 0 for any function g : R` Ñ R` such that limtÑ8 t{gptq ă 8.

Proof. The gptq “ t case is standard (e.g., Problem 9.4 in Karatzas and Shreve (1998, p.
104)). Thus, more generally, limtÑ8Wt{gptq “ limtÑ8 pWt{tq ¨ limtÑ8 pt{gptqq “ 0.

Let b be an OU process as defined by the equation [2.1], the solution to which is

bt “ b0e
´λt
` µ

ˆ

1´ e´λt

λ

˙

“ t when λ “ 0

` e´λt
ż t

0

σeλτ dWτ

“: Xt

.[K.1]

We invoke X “ pXtqtě0 from [K.1] below. Note that Xt ” bt when b0 “ µ “ 0.

Lemma K.2. Given Xt from [K.1], the following holds for each t ě 0:
(i) When λ “ 0,

ż t

0

bτ dτ “ b0t`
1

2
µt2 ` σ

ˆ

tWt ´

ż t

0

τ dWτ

˙

[K.2]

(ii) When λ ą 0,
ż t

0

bτ dτ “ b0

ˆ

1´ e´λt

λ

˙

`
µ

λ

ˆ

t´
1´ e´λt

λ

˙

`
σWt ´Xt

λ
[K.3]

Proof. In both points (i) and (ii), the deterministic terms follow from straightforward
integration of the first two terms in [K.1]. The stochastic terms follow from stochastic
integration by parts calculations:
Point (i): When λ “ 0, we have Xt “ σWt. Itô’s lemma yields applied to tWt yields
tWt “

şt

0
Wτ dτ `

şt

0
τ dWτ . Thus,

şt

0
Xτ dτ “ σ

´

tWt ´
şt

0
τ dWτ

¯

, as desired.

Point (ii):When λ ą 0, we have Xt “ e´λt
şt

0
σeλτ dWτ “: e´λtYt. Itô’s lemma applied

toXt yields dXt “ ´λXt dt` e´λt dYt “ ´λXt dt`σ dWt. Putting this in integral form
and rearrangning yields

şt

0
Xτ dτ “ pσWtq {λ´Xt{λ, as desired.

Lemma K.3. The following hold (almost surely):
(i) If λ ą 0, then limtÑ8 bt{t “ 0. If λ “ 0, then limtÑ8 bt{t “ µ,
(ii) For all λ ě 0 and α ą 0, limtÑ8 e

´αtbt “ 0, and
(iii) For all λ ě 0 and α ą 0, limtÑ8 e

´αt
şt

0
bτ dτ “ 0.

Proof. We consider each point of the lemma in turn.
Point (i): When λ “ 0, the result is immediate from [K.1] and Lemma K.1. When λ ą 0,
we have

lim
tÑ8

1

t

„

b0e
´λt
` µ

ˆ

1´ e´λt

λ

˙

“ 0.

OA–22



Thus, it suffices to show that limtÑ8Xt{t “ 0 for Xt in [K.1]. Defining the time-change
vptq :“ e2λt ´ 1 (with inverse tpvq :“ logpv ` 1q{p2λq), the process Bv :“

?
2λ
σ
eλtXtpvq is

a standard BM (Karatzas and Shreve 1998, p. 174). By construction,

Xt

t
“

σ
?

2λBvptq
a

vptq log pvptqq
.[K.4]

It suffices to show that the RHS of [K.4] goes to zero as v Ñ 8. To this end, the Law of
the Iterated Logarithm (Mörters and Peres 2010, p. 119) implies that

lim sup
vÑ8

|Bv|
a

2v log plogpvqq
“ 1[K.5]

and L’Hôpital’s rule implies that

lim
vÑ8

a

2v log plogpvqq
?
v log pvq

“ lim
vÑ8

1
?

2 logpvq
a

log plogpvqq
“ 0.[K.6]

Combining [K.5] with [K.6] yields the desired conclusion that

lim sup
vÑ8

|Bv|
?
v log pvq

“ lim sup
vÑ8

|Bv|
a

2v log plogpvqq

a

2v log plogpvqq
?
v log pvq

“ 0.

Point (ii): Let α ą 0 be given. Then

lim sup
tÑ8

e´αt|bt| “ lim sup
tÑ8

|bt|

t
¨
t

eαt
“ 1pλ “ 0q|µ| ¨ lim

tÑ8

t

eαt
“ 0

where the second equality follows from point (i).
Point (iii): First, suppose that λ ą 0. Lemma K.2(ii) yields

e´αt
ż t

0

bτ dτ “ e´αt
„

b0

ˆ

1´ e´λt

λ

˙

`
µ

λ

ˆ

t´
1´ e´λt

λ

˙

`
σ

λ
e´αtWt ´

e´αt

λ
Xt

The first term clearly goes to zero as t Ñ 8. The second term also goes to zero by
Lemma K.1. The third term goes to zero by point (ii) of the present lemma. Next, suppose
that λ “ 0. Lemma K.2(i) yields

e´αt
ż t

0

bτ dτ “ e´αt
„

b0t`
1

2
µt2



` σe´αttWt ´ σe
´αt

ż t

0

τ dWτ[K.7]
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The first term clearly goes to zero as tÑ 8, as does the second term because

lim
tÑ8

e´αttWt “ lim
tÑ8

Wt

eαt{2
¨ lim
tÑ8

t

eαt{2

“ 0

and limtÑ8Wt{e
αt{2 “ 0 by LemmaK.1. For the final term in [K.7], defineZt :“

şt

0
τ dWτ .

Using the time-change φptq :“ t3{3 (with inverse tpφq :“ p3φq1{3), the process B̂φptq :“ Zt
is a standard BM. Therefore,

lim
tÑ8

e´αtZt “ lim
φÑ8

e´αtpφqB̂φ “ lim
φÑ8

B̂φ

φ
¨

φ

exppαp3φq1{3q
“ 0,

where the last equality is by Lemma K.1 and L’Hôpital’s rule.

Lemma K.4. For any α ą 0, the following holds:
ż 8

0

e´αtbt dt “
b0

α ` λ
`

µ

αpα ` λq
`

σ

α ` λ

ż 8

0

e´αt dWt[K.8]

Proof. We integrate [K.1], discounted by e´αt. The first two terms yield

ż 8

0

e´αt

»

—

—

–

b0e
´λt
` µ

ˆ

1´ e´λt

λ

˙

“ t when λ “ 0

fi

ffi

ffi

fl

dt “
b0

α ` λ
`

µ

αpα ` λq
[K.9]

For the final
ş8

0
e´αtXt dt term, applying Itô’s lemma twice yields

e´αTXT “ ´pα ` λq

ż T

0

e´αtXt dt`

ż T

0

e´αtσ dWt.

Rearranging and letting T Ñ 8, we obtain
ż 8

0

e´αtXt dt “
σ

α ` λ

ż 8

0

e´αt dWt ´
1

α ` λ
lim
TÑ8

e´αTXT

“ 0 by Lemma K.3(ii)

.[K.10]

Combining [K.1], [K.9], and [K.10] completes the proof.

OA–24


	Introduction
	Model
	Environment
	Restrictions on Reporting Strategies

	Hidden Endowment Application
	Issues in PPI
	Sign Restrictions on Misreporting Strategies
	Tail Restrictions on Misreporting Strategies
	Strict Suboptimality of Contract PPI

	A Self-Insurance Approach
	Agent's Self-Insurance Problem
	Self-Insurance Contracts
	Contract PPI and the Optimal SI Contract
	Further Analysis

	Incentive Compatibility of SI Contracts
	Extended Reporting Problem
	Direct Revelation SI Contracts
	Indirect Proof: Revelation Principle
	Direct Proof: Dynamic Programming

	Discussion
	Fully Optimal Contracts
	Immiseration and Persistence
	Continuous vs. Discrete Time

	PPI's Derivation of Contract PPI
	On the Agent's Reporting Problem in DR-SICs
	Facts about AC Change-of-Measure
	PPI's Sufficient Conditions for IC
	Proof of prop:self-insurance
	Proof of lemma:sii-cost
	Further Properties of SI Contracts
	Hidden Savings
	Incentive Compatibility of DR-SICs without Jump Reports
	Optimal FO-IC Contracts
	Domain of Implementable (Marginal) Promised Utilities
	Permanent Shocks
	Transient Shocks
	Proof of proposition:full-opt


	Properties of Brownian Motion and OU Process

